These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 31376934)
1. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals. Srinivasan S; Hosokawa T; Vergara P; Chérasse Y; Naoi T; Sakurai T; Sakaguchi M Biochem Biophys Res Commun; 2019 Sep; 517(3):520-524. PubMed ID: 31376934 [TBL] [Abstract][Full Text] [Related]
2. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents. Kim H; Brünner HS; Carlén M Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238 [TBL] [Abstract][Full Text] [Related]
3. Calcium Imaging Reveals Fast Tuning Dynamics of Hippocampal Place Cells and CA1 Population Activity during Free Exploration Task in Mice. Sotskov VP; Pospelov NA; Plusnin VV; Anokhin KV Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054826 [TBL] [Abstract][Full Text] [Related]
4. Successful In vivo Calcium Imaging with a Head-Mount Miniaturized Microscope in the Amygdala of Freely Behaving Mouse. Lee HS; Han JH J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925887 [TBL] [Abstract][Full Text] [Related]
5. A wireless miniScope for deep brain imaging in freely moving mice. Barbera G; Liang B; Zhang L; Li Y; Lin DT J Neurosci Methods; 2019 Jul; 323():56-60. PubMed ID: 31116963 [TBL] [Abstract][Full Text] [Related]
6. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. Gengyo-Ando K; Kagawa-Nagamura Y; Ohkura M; Fei X; Chen M; Hashimoto K; Nakai J J Neurosci Methods; 2017 Jul; 286():56-68. PubMed ID: 28506879 [TBL] [Abstract][Full Text] [Related]
7. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope. Berdyyeva T; Otte S; Aluisio L; Ziv Y; Burns LD; Dugovic C; Yun S; Ghosh KK; Schnitzer MJ; Lovenberg T; Bonaventure P PLoS One; 2014; 9(11):e112068. PubMed ID: 25372144 [TBL] [Abstract][Full Text] [Related]
8. Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes. Li X; Cao VY; Zhang W; Mastwal SS; Liu Q; Otte S; Wang KH J Neurosci Methods; 2017 Nov; 291():238-248. PubMed ID: 28830724 [TBL] [Abstract][Full Text] [Related]
9. Imaging Neural Architecture in Brainbow Samples. Roossien DH; Cai D Methods Mol Biol; 2017; 1642():211-228. PubMed ID: 28815503 [TBL] [Abstract][Full Text] [Related]
10. Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals. Zhang L; Liang B; Barbera G; Hawes S; Zhang Y; Stump K; Baum I; Yang Y; Li Y; Lin DT Curr Protoc Neurosci; 2019 Jan; 86(1):e56. PubMed ID: 30315730 [TBL] [Abstract][Full Text] [Related]
12. A Compact Head-Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice. Jacob AD; Ramsaran AI; Mocle AJ; Tran LM; Yan C; Frankland PW; Josselyn SA Curr Protoc Neurosci; 2018 Jul; 84(1):e51. PubMed ID: 29944206 [TBL] [Abstract][Full Text] [Related]
13. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638 [TBL] [Abstract][Full Text] [Related]
14. NINscope, a versatile miniscope for multi-region circuit investigations. de Groot A; van den Boom BJG; van Genderen RM; Coppens J; van Veldhuijzen J; Bos J; Hoedemaker H; Negrello M; Willuhn I; De Zeeuw CI; Hoogland TM Elife; 2020 Jan; 9():. PubMed ID: 31934857 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope. Stamatakis AM; Schachter MJ; Gulati S; Zitelli KT; Malanowski S; Tajik A; Fritz C; Trulson M; Otte SL Front Neurosci; 2018; 12():496. PubMed ID: 30087590 [TBL] [Abstract][Full Text] [Related]
16. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice. Berg L; Gerdey J; Masseck OA J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936 [TBL] [Abstract][Full Text] [Related]
17. Combining Membrane Potential Imaging with Other Optical Techniques. Jaafari N; Vogt KE; Saggau P; Leslie LM; Zecevic D; Canepari M Adv Exp Med Biol; 2015; 859():103-25. PubMed ID: 26238050 [TBL] [Abstract][Full Text] [Related]
18. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Glock C; Nagpal J; Gottschalk A Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970 [TBL] [Abstract][Full Text] [Related]
19. Miniscope-LFOV: A large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals. Guo C; Blair GJ; Sehgal M; Sangiuliano Jimka FN; Bellafard A; Silva AJ; Golshani P; Basso MA; Blair HT; Aharoni D Sci Adv; 2023 Apr; 9(16):eadg3918. PubMed ID: 37083539 [TBL] [Abstract][Full Text] [Related]
20. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. Li N; Chen S; Guo ZV; Chen H; Huo Y; Inagaki HK; Chen G; Davis C; Hansel D; Guo C; Svoboda K Elife; 2019 Nov; 8():. PubMed ID: 31736463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]