BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31376978)

  • 1. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design.
    Morin JB; Samozino P; Murata M; Cross MR; Nagahara R
    J Biomech; 2019 Sep; 94():82-87. PubMed ID: 31376978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.
    Samozino P; Rabita G; Dorel S; Slawinski J; Peyrot N; Saez de Villarreal E; Morin JB
    Scand J Med Sci Sports; 2016 Jun; 26(6):648-58. PubMed ID: 25996964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between the force-velocity relationships of unloaded and sled-resisted sprinting: single vs. multiple trial methods.
    Cross MR; Samozino P; Brown SR; Morin JB
    Eur J Appl Physiol; 2018 Mar; 118(3):563-571. PubMed ID: 29302753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normative spatiotemporal and ground reaction force data for female and male sprinting.
    Nagahara R
    J Sports Sci; 2023 Jun; 41(12):1240-1249. PubMed ID: 37805986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion.
    Rabita G; Dorel S; Slawinski J; Sàez-de-Villarreal E; Couturier A; Samozino P; Morin JB
    Scand J Med Sci Sports; 2015 Oct; 25(5):583-94. PubMed ID: 25640466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of horizontal resistance loads on spatiotemporal and ground reaction force variables during maximal sprint acceleration.
    Sugisaki N; Kobayashi K; Yoshimoto T; Mitsukawa N; Tsuchie H; Takai Y; Kanehisa H
    PLoS One; 2023; 18(12):e0295758. PubMed ID: 38085716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of vest loading on sprint kinetics and kinematics.
    Cross MR; Brughelli ME; Cronin JB
    J Strength Cond Res; 2014 Jul; 28(7):1867-74. PubMed ID: 24378661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sprint Acceleration Mechanics in Masters Athletes.
    Pantoja PD; Saez DE Villarreal E; Brisswalter J; Peyré-Tartaruga LA; Morin JB
    Med Sci Sports Exerc; 2016 Dec; 48(12):2469-2476. PubMed ID: 27414690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground reaction force across the transition during sprint acceleration.
    Nagahara R; Kanehisa H; Fukunaga T
    Scand J Med Sci Sports; 2020 Mar; 30(3):450-461. PubMed ID: 31705835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of Sprint Force-Velocity-Power Profiles Obtained with KiSprint System.
    Šarabon N; Kozinc Ž; Ramos AG; Knežević OM; Čoh M; Mirkov DM
    J Sports Sci Med; 2021 Jun; 20(2):357-364. PubMed ID: 34211329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical determinants of 100-m sprint running performance.
    Morin JB; Bourdin M; Edouard P; Peyrot N; Samozino P; Lacour JR
    Eur J Appl Physiol; 2012 Nov; 112(11):3921-30. PubMed ID: 22422028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are peak ground reaction forces related to better sprint acceleration performance?
    Nagahara R; Kanehisa H; Matsuo A; Fukunaga T
    Sports Biomech; 2021 Apr; 20(3):360-369. PubMed ID: 30676878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations.
    Simperingham KD; Cronin JB; Ross A
    Sports Med; 2016 Nov; 46(11):1619-1645. PubMed ID: 26914267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-Velocity-Power Profiling During Weighted-Vest Sprinting in Soccer.
    Carlos-Vivas J; Marín-Cascales E; Freitas TT; Perez-Gomez J; Alcaraz PE
    Int J Sports Physiol Perform; 2019 Jul; 14(6):747–756. PubMed ID: 30427229
    [No Abstract]   [Full Text] [Related]  

  • 18. Changes in mechanical properties of sprinting during repeated sprint in elite rugby sevens athletes.
    Jiménez-Reyes P; Cross M; Ross A; Samozino P; Brughelli M; Gill N; Morin JB
    Eur J Sport Sci; 2019 Jun; 19(5):585-594. PubMed ID: 30409072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratio of forces during sprint acceleration: A comparison of different calculation methods.
    Bezodis N; Colyer S; Nagahara R; Bayne H; Bezodis I; Morin JB; Murata M; Samozino P
    J Biomech; 2021 Oct; 127():110685. PubMed ID: 34450518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.