These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31376979)

  • 1. Changes in shear wave propagation within skeletal muscle during active and passive force generation.
    Wang AB; Perreault EJ; Royston TJ; Lee SSM
    J Biomech; 2019 Sep; 94():115-122. PubMed ID: 31376979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear Waves Reveal Viscoelastic Changes in Skeletal Muscles After Hemispheric Stroke.
    Rasool G; Wang AB; Rymer WZ; Lee SSM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2006-2014. PubMed ID: 30334740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axial stress determines the velocity of shear wave propagation in passive but not active muscles in vivo.
    Bernabei M; Lee SSM; Perreault EJ; Sandercock TG
    J Appl Physiol (1985); 2023 Apr; 134(4):941-950. PubMed ID: 36861673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear wave velocity is sensitive to changes in muscle stiffness that occur independently from changes in force.
    Bernabei M; Lee SSM; Perreault EJ; Sandercock TG
    J Appl Physiol (1985); 2020 Jan; 128(1):8-16. PubMed ID: 31556833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
    Chatelin S; Gennisson JL; Bernal M; Tanter M; Pernot M
    Phys Med Biol; 2015 May; 60(9):3639-54. PubMed ID: 25880794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging.
    Gennisson JL; Deffieux T; Macé E; Montaldo G; Fink M; Tanter M
    Ultrasound Med Biol; 2010 May; 36(5):789-801. PubMed ID: 20420970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood.
    Eby SF; Cloud BA; Brandenburg JE; Giambini H; Song P; Chen S; LeBrasseur NK; An KN
    Clin Biomech (Bristol); 2015 Jan; 30(1):22-7. PubMed ID: 25483294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of muscle and tendon elasticity with passive joint stiffness: In vivo measurements using ultrasound shear wave elastography.
    Chino K; Takahashi H
    Clin Biomech (Bristol); 2015 Dec; 30(10):1230-5. PubMed ID: 26296832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered viscoelastic properties of stroke-affected muscles estimated using ultrasound shear waves - Preliminary data.
    Rasool G; Wang AB; Rymer WZ; Lee SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2869-2872. PubMed ID: 28324974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear wave ultrasound elastography of the biceps brachii can be used as a precise proxy for passive elbow torque in individuals with hemiparetic stroke.
    Ellis MD; Gurari N; Gerritsen NTA; Lee SM; Wang A; Dewald JPA
    Physiol Rep; 2023 May; 11(10):e15691. PubMed ID: 37208978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position.
    Chen J; O'Dell M; He W; Du LJ; Li PC; Gao J
    Clin Imaging; 2017; 45():26-29. PubMed ID: 28586712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
    Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL
    Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography.
    Koo TK; Guo JY; Cohen JH; Parker KJ
    Clin Biomech (Bristol); 2014 Jan; 29(1):33-9. PubMed ID: 24295566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pennation angle on measurement of shear wave elastography: in vivo observation of shear wave propagation in human pennate muscle.
    Chino K; Takahashi H
    Physiol Meas; 2018 Nov; 39(11):115003. PubMed ID: 30398162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.
    Chino K; Kawakami Y; Takahashi H
    Clin Physiol Funct Imaging; 2017 Jul; 37(4):394-399. PubMed ID: 26696446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting age-related changes in skeletal muscle mechanics using ultrasound shear wave elastography.
    Ateş F; Marquetand J; Zimmer M
    Sci Rep; 2023 Nov; 13(1):20062. PubMed ID: 37974024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity.
    Hoyt K; Kneezel T; Castaneda B; Parker KJ
    Phys Med Biol; 2008 Aug; 53(15):4063-80. PubMed ID: 18612176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.