These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31377426)

  • 1. iDHS-DSAMS: Identifying DNase I hypersensitive sites based on the dinucleotide property matrix and ensemble bagged tree.
    Zhang S; Yu Q; He H; Zhu F; Wu P; Gu L; Jiang S
    Genomics; 2020 Mar; 112(2):1282-1289. PubMed ID: 31377426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iDHS-DASTS: identifying DNase I hypersensitive sites based on LASSO and stacking learning.
    Zhang S; Duan Z; Yang W; Qian C; You Y
    Mol Omics; 2021 Feb; 17(1):130-141. PubMed ID: 33295914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iDHS-DMCAC: identifying DNase I hypersensitive sites with balanced dinucleotide-based detrending moving-average cross-correlation coefficient.
    Liang Y; Zhang S
    SAR QSAR Environ Res; 2019 Jun; 30(6):429-445. PubMed ID: 31117818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information.
    Zou H; Yang F; Yin Z
    Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework.
    Liu B; Long R; Chou KC
    Bioinformatics; 2016 Aug; 32(16):2411-8. PubMed ID: 27153623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule.
    Liang Y; Zhang S
    Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network.
    Dao FY; Lv H; Su W; Sun ZJ; Huang QL; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33751027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions.
    Feng P; Jiang N; Liu N
    ScientificWorldJournal; 2014; 2014():740506. PubMed ID: 25215331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iDHS-RGME: Identification of DNase I hypersensitive sites by integrating information on nucleotide composition and physicochemical properties.
    Jin J; Feng J
    Biochem Biophys Res Commun; 2024 Nov; 734():150618. PubMed ID: 39222575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local-Global Feature Extraction Network.
    Wang LS; Sun ZL
    Interdiscip Sci; 2023 Jun; 15(2):155-170. PubMed ID: 36166165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based spare-cross covariance information into Chou's pseudo components.
    Zhang S; Yang K; Lei Y; Song K
    Genomics; 2019 Dec; 111(6):1760-1770. PubMed ID: 30529702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components.
    Zhang L; Kong L
    J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites.
    Zheng Y; Wang H; Ding Y; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2768-2774. PubMed ID: 33481716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of DNase I hypersensitive sites in plant genome using multiple modes of pseudo components.
    Zhang S; Zhuang W; Xu Z
    Anal Biochem; 2018 May; 549():149-156. PubMed ID: 29604265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest.
    Manavalan B; Shin TH; Lee G
    Oncotarget; 2018 Jan; 9(2):1944-1956. PubMed ID: 29416743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors.
    Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B
    Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.
    Cooper J; Ding Y; Song J; Zhao K
    Nat Protoc; 2017 Nov; 12(11):2342-2354. PubMed ID: 29022941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and unambiguous detection of DNase I hypersensitive site in rare population of cells.
    Zeng WP; McFarland MM
    PLoS One; 2014; 9(1):e85740. PubMed ID: 24465674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.