These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 31377445)

  • 1. Corrigendum to "Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing"[Anal. Biochem. 568 (2019) 31-40].
    Ghassemi B; Ajami M; Shamsara M; Soleimani M; Kiani J; Rassoulzadegan M
    Anal Biochem; 2019 Oct; 583():113343. PubMed ID: 31377445
    [No Abstract]   [Full Text] [Related]  

  • 2. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans.
    Chen X; Xu F; Zhu C; Ji J; Zhou X; Feng X; Guang S
    Sci Rep; 2014 Dec; 4():7581. PubMed ID: 25531445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency.
    Dang Y; Jia G; Choi J; Ma H; Anaya E; Ye C; Shankar P; Wu H
    Genome Biol; 2015 Dec; 16():280. PubMed ID: 26671237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.
    Bai M; Liang D; Wang Y; Li Q; Wu Y; Li J
    J Genet Genomics; 2016 May; 43(5):289-96. PubMed ID: 27210043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dramatic Improvement of CRISPR/Cas9 Editing in
    Ng H; Dean N
    mSphere; 2017; 2(2):. PubMed ID: 28435892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated gene editing in an exogenous transgene and an endogenous sex determination gene in the Caribbean fruit fly, Anastrepha suspensa.
    Li J; Handler AM
    Gene; 2019 Apr; 691():160-166. PubMed ID: 30611840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9.
    Beneke T; Gluenz E
    Methods Mol Biol; 2019; 1971():189-210. PubMed ID: 30980304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems.
    Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK
    Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.
    Mout R; Ray M; Yesilbag Tonga G; Lee YW; Tay T; Sasaki K; Rotello VM
    ACS Nano; 2017 Mar; 11(3):2452-2458. PubMed ID: 28129503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing.
    Zhang Z; Wan T; Chen Y; Chen Y; Sun H; Cao T; Songyang Z; Tang G; Wu C; Ping Y; Xu FJ; Huang J
    Macromol Rapid Commun; 2019 Mar; 40(5):e1800068. PubMed ID: 29708298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed Gene Editing and Protein Overexpression Using a
    Cody WB; Scholthof HB; Mirkov TE
    Plant Physiol; 2017 Sep; 175(1):23-35. PubMed ID: 28663331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated gene manipulation to create single-amino-acid-substituted and floxed mice with a cloning-free method.
    Ma X; Chen C; Veevers J; Zhou X; Ross RS; Feng W; Chen J
    Sci Rep; 2017 Feb; 7():42244. PubMed ID: 28176880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of machine learning in the CRISPR/Cas9 system].
    Zhang GS; Yang Y; Zhang LM; Dai XH
    Yi Chuan; 2018 Sep; 40(9):704-723. PubMed ID: 30369475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.