BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31377522)

  • 1. An inelastic multislice simulation method incorporating plasmon energy losses.
    Mendis BG
    Ultramicroscopy; 2019 Nov; 206():112816. PubMed ID: 31377522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "Phase Scrambling" Algorithm for Parallel Multislice Simulation of Multiple Phonon and Plasmon Scattering Configurations.
    Mendis BG
    Microsc Microanal; 2023 Jun; 29(3):1111-1123. PubMed ID: 37749702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angle-resolved STEM using an iris aperture: Scattering contributions and sources of error for the quantitative analysis in Si.
    Grieb T; Krause FF; Müller-Caspary K; Firoozabadi S; Mahr C; Schowalter M; Beyer A; Oppermann O; Volz K; Rosenauer A
    Ultramicroscopy; 2021 Feb; 221():113175. PubMed ID: 33383361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inelastic Scattering in Electron Backscatter Diffraction and Electron Channeling Contrast Imaging.
    Mendis BG; Barthel J; Findlay SD; Allen LJ
    Microsc Microanal; 2020 Dec; 26(6):1147-1157. PubMed ID: 33190677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory underpinning multislice simulations with plasmon energy losses.
    Mendis BG
    Microscopy (Oxf); 2020 May; 69(3):173-175. PubMed ID: 32115642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy.
    Beyer A; Krause FF; Robert HL; Firoozabadi S; Grieb T; Kükelhan P; Heimes D; Schowalter M; Müller-Caspary K; Rosenauer A; Volz K
    Sci Rep; 2020 Oct; 10(1):17890. PubMed ID: 33087734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
    Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ
    Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.
    Mendis B
    Acta Crystallogr A Found Adv; 2024 Mar; 80(Pt 2):178-188. PubMed ID: 38270201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image simulation for atomic resolution secondary electron image.
    Wu L; Egerton RF; Zhu Y
    Ultramicroscopy; 2012 Dec; 123():66-73. PubMed ID: 22940532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxides.
    Basha A; Levi G; Amrani T; Li Y; Ankonina G; Shekhter P; Kornblum L; Goldfarb I; Kohn A
    Ultramicroscopy; 2022 Oct; 240():113570. PubMed ID: 35700667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress and new advances in simulating electron microscopy datasets using MULTEM.
    Lobato I; Van Aert S; Verbeeck J
    Ultramicroscopy; 2016 Sep; 168():17-27. PubMed ID: 27323350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-energy electron properties: Electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory.
    Chantler CT; Bourke JD
    Ultramicroscopy; 2019 Jun; 201():38-48. PubMed ID: 30925298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.
    Gu L; Sigle W; Koch CT; Nelayah J; Srot V; van Aken PA
    Ultramicroscopy; 2009 Aug; 109(9):1164-70. PubMed ID: 19525066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3.
    Fitting L; Thiel S; Schmehl A; Mannhart J; Muller DA
    Ultramicroscopy; 2006; 106(11-12):1053-61. PubMed ID: 16867311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role of inelastic interactions in quantitative electron microscopy.
    Mkhoyan KA; Maccagnano-Zacher SE; Thomas MG; Silcox J
    Phys Rev Lett; 2008 Jan; 100(2):025503. PubMed ID: 18232885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of mean free paths for inelastic electron scattering of Si and SiO2.
    Lee CW; Ikematsu Y; Shindo D
    J Electron Microsc (Tokyo); 2002; 51(3):143-8. PubMed ID: 12113621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling the dynamic electron scattering in imaging the graphene sheets by the high-angle annular dark-field microscopy.
    Ding WF; Chen TS; Liao KM; He LB; Song FQ; Zhou JF; Wan JG; Wang GH; Han M
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6494-8. PubMed ID: 22962772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decisive factors for realizing atomic-column resolution using STEM and EELS .
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008 Aug; 39(6):653-7. PubMed ID: 18788098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decisive factors for realizing atomic-column resolution using STEM and EELS.
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008; 39(3):257-62. PubMed ID: 18054240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of thermal diffuse scattering including a detailed phonon dispersion curve.
    Muller DA; Edwards B; Kirkland EJ; Silcox J
    Ultramicroscopy; 2001 Feb; 86(3-4):371-80. PubMed ID: 11281157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.