These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31377525)

  • 21. Development of predictive models for determining enterococci levels at Gulf Coast beaches.
    Zhang Z; Deng Z; Rusch KA
    Water Res; 2012 Feb; 46(2):465-74. PubMed ID: 22130001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.
    Elmolla ES; Chaudhuri M; Eltoukhy MM
    J Hazard Mater; 2010 Jul; 179(1-3):127-34. PubMed ID: 20307930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of the concentration of chlorophyll-a for Liuhai urban lakes in Beijing City.
    Zeng Y; Yang ZF; Liu JL
    J Environ Sci (China); 2006; 18(4):827-31. PubMed ID: 17078569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning.
    Xu T; Coco G; Neale M
    Water Res; 2020 Jun; 177():115788. PubMed ID: 32330740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays - Oxidative stress and antiandrogenic effects after artificial infiltration.
    Oskarsson A; Rosenmai AK; Mandava G; Johannisson A; Holmes A; Tröger R; Lundqvist J
    Sci Total Environ; 2021 Mar; 758():144001. PubMed ID: 33338789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turbidity prediction of lake-type raw water using random forest model based on meteorological data: A case study of Tai lake, China.
    Zhang Y; Yao X; Wu Q; Huang Y; Zhou Z; Yang J; Liu X
    J Environ Manage; 2021 Jul; 290():112657. PubMed ID: 33892240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of Artificial Neural Networks in integrated water management: fiction or future?
    Schulze FH; Wolf H; Jansen HW; van der Veer P
    Water Sci Technol; 2005; 52(9):21-31. PubMed ID: 16445170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimisation of ANN topology for predicting the rehydrated apple cubes colour change using RSM and GA.
    Winiczenko R; Górnicki K; Kaleta A; Janaszek-Mańkowska M
    Neural Comput Appl; 2018; 30(6):1795-1809. PubMed ID: 30220793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters.
    Zare Abyaneh H
    J Environ Health Sci Eng; 2014 Jan; 12(1):40. PubMed ID: 24456676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.
    Azadi S; Amiri H; Rakhshandehroo GR
    Waste Manag; 2016 Sep; 55():220-30. PubMed ID: 27264459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of municipal solid waste generation using nonlinear autoregressive network.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Maulud KN
    Environ Monit Assess; 2015 Dec; 187(12):753. PubMed ID: 26573690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.
    Salari M; Salami Shahid E; Afzali SH; Ehteshami M; Conti GO; Derakhshan Z; Sheibani SN
    Food Chem Toxicol; 2018 Aug; 118():212-219. PubMed ID: 29684494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of ultraviolet-visible spectrophotometry associated with artificial neural networks as an alternative for determining the water quality index.
    Alves EM; Rodrigues RJ; Dos Santos Corrêa C; Fidemann T; Rocha JC; Buzzo JLL; de Oliva Neto P; Núñez EGF
    Environ Monit Assess; 2018 May; 190(6):319. PubMed ID: 29717330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence and profiling of multiple nitrosamines in source water and drinking water of China.
    Wang W; Yu J; An W; Yang M
    Sci Total Environ; 2016 May; 551-552():489-95. PubMed ID: 26896577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis].
    Yang YW; Chen G; Yang YW; Chen G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1339-43. PubMed ID: 16329517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.
    Qiu M; Song Y
    PLoS One; 2016; 11(5):e0155133. PubMed ID: 27196055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model.
    Ravansalar M; Rajaee T
    Environ Monit Assess; 2015 Jun; 187(6):366. PubMed ID: 25990827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methodological approach for the optimization of drinking water treatment plants' operation: a case study.
    Sorlini S; Collivignarelli MC; Castagnola F; Crotti BM; Raboni M
    Water Sci Technol; 2015; 71(4):597-604. PubMed ID: 25746653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of changes in water quality throughout the drinking water production/distribution chain using toxicological and fluorescence analyses.
    Han X; Ji X; Ma X; Liu JL; He ZY; Chang W; Tang F; Liu AL
    J Environ Sci (China); 2020 Jan; 87():310-318. PubMed ID: 31791504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.