These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31377528)

  • 1. Prediction of 1,4-dioxane decomposition during VUV treatment by model simulation taking into account effects of coexisting inorganic ions.
    Matsushita T; Sugita W; Ishikawa T; Shi G; Nishizawa S; Matsui Y; Shirasaki N
    Water Res; 2019 Nov; 164():114918. PubMed ID: 31377528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics-based modeling and optimization of flow rate and radiant exitance for 1,4-dioxane degradation in a vacuum ultraviolet photoreactor.
    Shi G; Nishizawa S; Matsushita T; Kato Y; Kozumi T; Matsui Y; Shirasaki N
    Water Res; 2021 Jun; 197():117086. PubMed ID: 33819661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency.
    Xie P; Yue S; Ding J; Wan Y; Li X; Ma J; Wang Z
    Water Res; 2018 Apr; 133():69-78. PubMed ID: 29367049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation.
    Duca C; Imoberdorf G; Mohseni M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 May; 52(6):524-532. PubMed ID: 28276889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane.
    Lee CS; Venkatesan AK; Walker HW; Gobler CJ
    Water Res; 2020 Apr; 173():115534. PubMed ID: 32023496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance reductive decomposition of trichloroacetamide by the vacuum-ultraviolet/sulfite process: Kinetics, mechanism and combined toxicity risk.
    Huang H; Liang X; Li Q; Deng J; Zou J; Li X; Ma X; Li G; Chen G
    Water Res; 2022 Oct; 225():119122. PubMed ID: 36152441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of urea from swimming pool water by UV/VUV: The roles of additives, mechanisms, influencing factors, and reaction products.
    Long L; Bu Y; Chen B; Sadiq R
    Water Res; 2019 Sep; 161():89-97. PubMed ID: 31181450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace Organic Pollutant Removal by VUV/UV/chlorine Process: Feasibility Investigation for Drinking Water Treatment on a Mini-Fluidic VUV/UV Photoreaction System and a Pilot Photoreactor.
    Li M; Hao M; Yang L; Yao H; Bolton JR; Blatchley ER; Qiang Z
    Environ Sci Technol; 2018 Jul; 52(13):7426-7433. PubMed ID: 29792423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined approach of electrodialysis pretreatment and vacuum UV for removing micropollutants from natural waters.
    Dubowski Y; Alfiya Y; Gilboa Y; Sabach S; Friedler E
    Water Res; 2024 Mar; 251():121152. PubMed ID: 38277830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of N-nitrosamines and 1,4-dioxane using vacuum ultraviolet irradiation (UV
    Fujioka T; Kodamatani H; Minh Tran HD; Fujioka A; Hino K; Yoshikawa T; Inoue D; Ikehata K
    Chemosphere; 2021 Sep; 278():130326. PubMed ID: 33836400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Pollutant Degradation in Water by the Vacuum-Ultraviolet/Ultraviolet/H
    Li M; Li W; Bolton JR; Blatchley ER; Qiang Z
    Environ Sci Technol; 2019 Jan; 53(2):912-918. PubMed ID: 30548062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of hazardous by-products resulting from the irradiation of natural organic matter: comparison between UV and VUV irradiation.
    Buchanan W; Roddick F; Porter N
    Chemosphere; 2006 May; 63(7):1130-41. PubMed ID: 16297432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH and coexisting chemicals on photolysis of perfluorooctane sulfonate using an excited xenon dimer lamp.
    Kishimoto N; Doda K
    Water Sci Technol; 2018 Jan; 77(1-2):108-113. PubMed ID: 29339609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of six typical pesticides in water by VUV/UV/chlorine process: Evaluation of the synergistic effect.
    Yang L; Zhang Z
    Water Res; 2019 Sep; 161():439-447. PubMed ID: 31228663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of 1,4-dioxane by advanced oxidation and biochemical process.
    Kim CG; Seo HJ; Lee BR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(4):599-611. PubMed ID: 16779934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimethoate degradation by VUV/UV process: Kinetics, mechanism and economic feasibility.
    Wu Z; Yang L; Tang Y; Qiang Z; Li M
    Chemosphere; 2021 Jun; 273():129724. PubMed ID: 33524761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of diethyl phthalate (DEP) by vacuum ultraviolet process: influencing factors, oxidation products, and toxicity assessment.
    Wu Y; Deng L; Bu L; Zhu S; Shi Z; Zhou S
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5435-5444. PubMed ID: 30607842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid degradation of norfloxacin by VUV/Fe
    Wang C; Zhang J; Du J; Zhang P; Zhao Z; Shi W; Cui F
    J Hazard Mater; 2021 Aug; 416():125893. PubMed ID: 34492831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolysis of chloramines in vacuum-UV and vacuum-UV/chlorine advanced oxidation processes for removal of 1,4-dioxane: Effect of water matrix, kinetic modeling, and implications for potable reuse.
    Masjoudi M; Mohseni M
    J Hazard Mater; 2023 Jul; 454():131454. PubMed ID: 37094441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Chemical-Free Oxidation of Trace Organic Chemicals by VUV/UV as an Alternative to Conventional UV/H
    Wang WL; Jing ZB; Zhang YL; Wu QY; Drewes JE; Lee MY; Hübner U
    Environ Sci Technol; 2024 Apr; 58(16):7113-7123. PubMed ID: 38547102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.