These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31377597)

  • 1. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z
    Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic mitigation in paddy soils by using microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z
    Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil.
    Yi XY; Yang YP; Yuan HY; Chen Z; Duan GL; Zhu YG
    J Hazard Mater; 2019 Jul; 373():591-599. PubMed ID: 30952004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains.
    Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ
    Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil.
    Wang X; Chen X; Yang J; Wang Z; Sun G
    J Environ Sci (China); 2009; 21(11):1562-8. PubMed ID: 20108691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated Carbon Application Simultaneously Alleviates Paddy Soil Arsenic Mobilization and Carbon Emission by Decreasing Porewater Dissolved Organic Matter.
    Si D; Wu S; Wu H; Wang D; Fu QL; Wang Y; Wang P; Zhao FJ; Zhou D
    Environ Sci Technol; 2024 May; 58(18):7880-7890. PubMed ID: 38670926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How different nitrogen fertilizers affect arsenic mobility in paddy soil after straw incorporation?
    Liu L; Shen RL; Zhao ZQ; Ding LJ; Cui HL; Li G; Yang YP; Duan GL; Zhu YG
    J Hazard Mater; 2022 Aug; 436():129135. PubMed ID: 35594672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils.
    Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X
    Environ Res; 2024 May; 249():118421. PubMed ID: 38325790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic behavior across soil-water interfaces in paddy soils: Coupling, decoupling and speciation.
    Yuan ZF; Gustave W; Boyle J; Sekar R; Bridge J; Ren Y; Tang X; Guo B; Chen Z
    Chemosphere; 2021 Apr; 269():128713. PubMed ID: 33162156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO
    Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M
    Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of Paddy Soil Organic Carbon Mineralization and Influencing Factors Under Different Water Conditions and Microbial Biomass Levels].
    Liu Q; Li YH; Li Z; Wei XM; Zhu ZK; Wu JS; Ge TD
    Huan Jing Ke Xue; 2021 May; 42(5):2440-2448. PubMed ID: 33884815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils.
    Xiao S; Luo M; Liu Y; Bai J; Yang Y; Zhai Z; Huang J
    Sci Total Environ; 2021 Feb; 756():144056. PubMed ID: 33277009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice (Oryza sativa L.).
    Gustave W; Yuan ZF; Li X; Ren YX; Feng WJ; Shen H; Chen Z
    Environ Pollut; 2020 May; 260():113989. PubMed ID: 31991356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced arsenic availability in paddy soil through Fe-organic ligand complexation mediated by bamboo biochar.
    Tang L; Xiong L; Zhang H; Joseph A; Wang Y; Li J; Yuan X; Rene ER; Zhu N
    Chemosphere; 2024 Feb; 349():140790. PubMed ID: 38013023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies.
    Zecchin S; Corsini A; Martin M; Cavalca L
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6725-6738. PubMed ID: 28660288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.