These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31377641)

  • 1. Smectite fraction assessment in complex natural clay rocks from interlayer water content determined by thermogravimetric and thermoporometry analysis.
    Grekov D; Montavon G; Robinet JC; Grambow B
    J Colloid Interface Sci; 2019 Nov; 555():157-165. PubMed ID: 31377641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the cation dependence of interlamellar and interparticular water and swelling in smectite clays.
    Salles F; Bildstein O; Douillard JM; Jullien M; Raynal J; Van Damme H
    Langmuir; 2010 Apr; 26(7):5028-37. PubMed ID: 20205458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of interlayer hydration in lincomycin sorption by smectite clays.
    Wang C; Ding Y; Teppen BJ; Boyd SA; Song C; Li H
    Environ Sci Technol; 2009 Aug; 43(16):6171-6. PubMed ID: 19746709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic data of adsorption reveal the entry of CH
    Grekov DI; Suzuki-Muresan T; Kalinichev AG; Pré P; Grambow B
    Phys Chem Chem Phys; 2020 Aug; 22(29):16727-16733. PubMed ID: 32658236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Sorption of Supercritical CO
    Hwang J; Pini R
    Langmuir; 2021 Mar; 37(12):3778-3788. PubMed ID: 33734708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.
    Aggarwal V; Li H; Boyd SA; Teppen BJ
    Environ Sci Technol; 2006 Feb; 40(3):894-9. PubMed ID: 16509334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of fullerene derivatives into smectite clays: a new family of organic-inorganic nanocomposites.
    Gournis D; Georgakilas V; Karakassides MA; Bakas T; Kordatos K; Prato M; Fanti M; Zerbetto F
    J Am Chem Soc; 2004 Jul; 126(27):8561-8. PubMed ID: 15238015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Use of Thermoporometry in the Study of Frost Resistance of Rocks.
    Stępień P; Spychał E
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations.
    Michels L; Fossum JO; Rozynek Z; Hemmen H; Rustenberg K; Sobas PA; Kalantzopoulos GN; Knudsen KD; Janek M; Plivelic TS; da Silva GJ
    Sci Rep; 2015 Mar; 5():8775. PubMed ID: 25739522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles study of illite-smectite and implications for clay mineral systems.
    Stixrude L; Peacor DR
    Nature; 2002 Nov; 420(6912):165-8. PubMed ID: 12432389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.
    Bourg IC; Ajo-Franklin JB
    Acc Chem Res; 2017 Sep; 50(9):2067-2074. PubMed ID: 28862427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlayer Cation Polarizability Affects Supercritical Carbon Dioxide Adsorption by Swelling Clays.
    Cunniff SS; Schaef HT; Burton SD; Walter ED; Hoyt DW; Loring JS; Bowers GM
    Langmuir; 2022 Dec; 38(50):15540-15551. PubMed ID: 36469510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of Interlayer Equivalent Pores for Anion Diffusion in Clay-Rich Sedimentary Rocks.
    Wigger C; Van Loon LR
    Environ Sci Technol; 2017 Feb; 51(4):1998-2006. PubMed ID: 28088850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution.
    Sartor LR; de Azevedo AC; Andrade GR
    Environ Technol; 2015; 36(5-8):786-95. PubMed ID: 25253565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion of Water through the Dual-Porosity Swelling Clay Mineral Vermiculite.
    Tertre E; Savoye S; Hubert F; Prêt D; Dabat T; Ferrage E
    Environ Sci Technol; 2018 Feb; 52(4):1899-1907. PubMed ID: 29359924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineralogical, thermal and rheological characterization of some Tunisian green commercial clays and possible application as peloids with thermal and sea waters.
    Barhoumi T; Bekri-Abbes I; Srasra E
    Environ Geochem Health; 2021 Dec; 43(12):4919-4937. PubMed ID: 34181138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H
    Chen N; Fang G; Liu G; Zhou D; Gao J; Gu C
    J Hazard Mater; 2018 Sep; 357():483-490. PubMed ID: 29936346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review.
    Cecilia JA; García-Sancho C; Vilarrasa-García E; Jiménez-Jiménez J; Rodriguez-Castellón E
    Chem Rec; 2018 Jul; 18(7-8):1085-1104. PubMed ID: 29485231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Precursor of the Cretaceous-Tertiary Boundary Clays at Stevns Klint, Denmark, and DSDP Hole 465A.
    Kastner M; Asaro F; Michel HV; Alvarez W; Alvarez LW
    Science; 1984 Oct; 226(4671):137-43. PubMed ID: 17814325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subseismic to Seismic Slip in Smectite Clay Nanofoliation.
    Aretusini S; Plümper O; Spagnuolo E; Di Toro G
    J Geophys Res Solid Earth; 2019 Jul; 124(7):6589-6601. PubMed ID: 31894196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.