BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31377681)

  • 1. Studies in the use of data mining, prediction algorithms, and a universal exchange and inference language in the analysis of socioeconomic health data.
    Robson B; Boray S
    Comput Biol Med; 2019 Sep; 112():103369. PubMed ID: 31377681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of a web based universal exchange and inference language for medicine: Sparse data, probabilities and inference in data mining of clinical data repositories.
    Robson B; Boray S
    Comput Biol Med; 2015 Nov; 66():82-102. PubMed ID: 26386548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the Quantum Universal Exchange Language to precision medicine and drug lead discovery. Preliminary example studies using the mitochondrial genome.
    Robson B
    Comput Biol Med; 2020 Feb; 117():103621. PubMed ID: 32072972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies in the extensively automatic construction of large odds-based inference networks from structured data. Examples from medical, bioinformatics, and health insurance claims data.
    Robson B; Boray S
    Comput Biol Med; 2018 Apr; 95():147-166. PubMed ID: 29500985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suggestions for a Web based universal exchange and inference language for medicine.
    Robson B; Caruso TP; Balis UG
    Comput Biol Med; 2013 Dec; 43(12):2297-310. PubMed ID: 24211018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets.
    Robson B
    Comput Biol Med; 2014 Aug; 51():183-97. PubMed ID: 24954566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Survey of Data Mining and Deep Learning in Bioinformatics.
    Lan K; Wang DT; Fong S; Liu LS; Wong KKL; Dey N
    J Med Syst; 2018 Jun; 42(8):139. PubMed ID: 29956014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-mining to build a knowledge representation store for clinical decision support. Studies on curation and validation based on machine performance in multiple choice medical licensing examinations.
    Robson B; Boray S
    Comput Biol Med; 2016 Jun; 73():71-93. PubMed ID: 27089305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping chemical structure-activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S. counties.
    Herrera-Ibatá DM; Pazos A; Orbegozo-Medina RA; Romero-Durán FJ; González-Díaz H
    Biosystems; 2015 Jun; 132-133():20-34. PubMed ID: 25916548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting coronary artery disease: a comparison between two data mining algorithms.
    Ayatollahi H; Gholamhosseini L; Salehi M
    BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining real-world high dimensional structured data in medicine and its use in decision support. Some different perspectives on unknowns, interdependency, and distinguishability.
    Robson B; Boray S; Weisman J
    Comput Biol Med; 2022 Feb; 141():105118. PubMed ID: 34971979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The analysis of the effects of acute rheumatic fever in childhood on cardiac disease with data mining.
    Emre İE; Erol N; Ayhan Yİ; Özkan Y; Erol Ç
    Int J Med Inform; 2019 Mar; 123():68-75. PubMed ID: 30654905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional General Graphs for inference. Principles and implications for medicine.
    Robson B
    Comput Biol Med; 2019 May; 108():382-399. PubMed ID: 31075569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LEMRG: Decision Rule Generation Algorithm for Mining MicroRNA Expression Data.
    Piątek Ł; Grzymała-Busse JW
    Adv Exp Med Biol; 2017; 1028():105-137. PubMed ID: 29058219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards intelligent Internet-roaming agents for mining and inference from medical data.
    Robson B
    Stud Health Technol Inform; 2009; 149():157-77. PubMed ID: 19745479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants and development of a web-based child mortality prediction model in resource-limited settings: A data mining approach.
    Tesfaye B; Atique S; Elias N; Dibaba L; Shabbir SA; Kebede M
    Comput Methods Programs Biomed; 2017 Mar; 140():45-51. PubMed ID: 28254089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering Psychological Principles by Mining Naturally Occurring Data Sets.
    Goldstone RL; Lupyan G
    Top Cogn Sci; 2016 Jul; 8(3):548-68. PubMed ID: 27404718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. POPPER, a simple programming language for probabilistic semantic inference in medicine.
    Robson B
    Comput Biol Med; 2015 Jan; 56():107-23. PubMed ID: 25464353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods.
    Patel TA; Puppala M; Ogunti RO; Ensor JE; He T; Shewale JB; Ankerst DP; Kaklamani VG; Rodriguez AA; Wong ST; Chang JC
    Cancer; 2017 Jan; 123(1):114-121. PubMed ID: 27571243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.