These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31377681)

  • 41. Automated Spelling Correction for Clinical Text Mining in Russian.
    Balabaeva K; Funkner A; Kovalchuk S
    Stud Health Technol Inform; 2020 Jun; 270():43-47. PubMed ID: 32570343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A survey on annotation tools for the biomedical literature.
    Neves M; Leser U
    Brief Bioinform; 2014 Mar; 15(2):327-40. PubMed ID: 23255168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomedical text mining and its applications in cancer research.
    Zhu F; Patumcharoenpol P; Zhang C; Yang Y; Chan J; Meechai A; Vongsangnak W; Shen B
    J Biomed Inform; 2013 Apr; 46(2):200-11. PubMed ID: 23159498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mining association language patterns using a distributional semantic model for negative life event classification.
    Yu LC; Chan CL; Lin CC; Lin IC
    J Biomed Inform; 2011 Aug; 44(4):509-18. PubMed ID: 21292030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zsyntax: a formal language for molecular biology with projected applications in text mining and biological prediction.
    Boniolo G; D'Agostino M; Di Fiore PP
    PLoS One; 2010 Mar; 5(3):e9511. PubMed ID: 20209084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An efficient data preprocessing approach for large scale medical data mining.
    Hu YH; Lin WC; Tsai CF; Ke SW; Chen CW
    Technol Health Care; 2015; 23(2):153-60. PubMed ID: 25515050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain.
    Paul R; Groza T; Hunter J; Zankl A
    J Biomed Inform; 2014 Apr; 48():73-83. PubMed ID: 24333481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Minimalistic Approach to Coreference Resolution in Lithuanian Medical Records.
    Žitkus V; Butkienė R; Butleris R; Maskeliūnas R; Damaševičius R; Woźniak M
    Comput Math Methods Med; 2019; 2019():9079840. PubMed ID: 31015858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Community challenges in biomedical text mining over 10 years: success, failure and the future.
    Huang CC; Lu Z
    Brief Bioinform; 2016 Jan; 17(1):132-44. PubMed ID: 25935162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Text mining approach to predict hospital admissions using early medical records from the emergency department.
    Lucini FR; Fogliatto FS; da Silveira GJC; Neyeloff JL; Anzanello MJ; Kuchenbecker RS; Schaan BD
    Int J Med Inform; 2017 Apr; 100():1-8. PubMed ID: 28241931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Socioeconomic and behavioural determinants of malaria among the migrants in gold mining, rubber and oil palm plantation areas in Myanmar.
    Soe HZ; Thi A; Aye NN
    Infect Dis Poverty; 2017 Nov; 6(1):142. PubMed ID: 29110734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Schizophrenia Auxiliary Diagnosis System Based on Data Mining Technology.
    Wang X; Zhao N; Ouyang P; Lin J; Hu J
    J Med Syst; 2019 Mar; 43(5):125. PubMed ID: 30919125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discovering novel causal patterns from biomedical natural-language texts using Bayesian nets.
    Atkinson J; Rivas A
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):714-22. PubMed ID: 19000950
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantifying the informativeness for biomedical literature summarization: An itemset mining method.
    Moradi M; Ghadiri N
    Comput Methods Programs Biomed; 2017 Jul; 146():77-89. PubMed ID: 28688492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using the Personal Health Train for Automated and Privacy-Preserving Analytics on Vertically Partitioned Data.
    van Soest J; Sun C; Mussmann O; Puts M; van den Berg B; Malic A; van Oppen C; Towend D; Dekker A; Dumontier M
    Stud Health Technol Inform; 2018; 247():581-585. PubMed ID: 29678027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting CD4 count changes among patients on antiretroviral treatment: Application of data mining techniques.
    Kebede M; Zegeye DT; Zeleke BM
    Comput Methods Programs Biomed; 2017 Dec; 152():149-157. PubMed ID: 29054255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. cmFSM: a scalable CPU-MIC coordinated drug-finding tool by frequent subgraph mining.
    Yang S; Guo R; Liu R; Liao X; Zou Q; Shi B; Peng S
    BMC Bioinformatics; 2018 May; 19(Suppl 4):98. PubMed ID: 29745832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.
    Ravikumar KE; Wagholikar KB; Li D; Kocher JP; Liu H
    BMC Bioinformatics; 2015 Jun; 16():185. PubMed ID: 26047637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.
    Nasr Azadani M; Ghadiri N; Davoodijam E
    J Biomed Inform; 2018 Aug; 84():42-58. PubMed ID: 29906584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.