BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31377859)

  • 1. Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides.
    Zhan Q; Zhao H; Hong Y; Pu C; Liu Y; Lan M
    Mikrochim Acta; 2019 Aug; 186(9):600. PubMed ID: 31377859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti
    Hong Y; Zhan Q; Zheng Y; Pu C; Zhao H; Lan M
    Talanta; 2019 May; 197():77-85. PubMed ID: 30771991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity.
    Hong Y; Zhao H; Pu C; Zhan Q; Sheng Q; Lan M
    Anal Chem; 2018 Sep; 90(18):11008-11015. PubMed ID: 30136585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic arginine-functionalized mesoporous polydopamine-graphene oxide composites for glycopeptides analysis.
    Zheng Y; Pu C; Zhao H; Gu Q; Zhu T; Lan M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jan; 1189():123049. PubMed ID: 34840084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic Mesoporous Silica Materials for Highly Specific Enrichment of N-Linked Glycopeptide.
    Sun N; Wang J; Yao J; Deng C
    Anal Chem; 2017 Feb; 89(3):1764-1771. PubMed ID: 28068756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional MoS
    Xia C; Jiao F; Gao F; Wang H; Lv Y; Shen Y; Zhang Y; Qian X
    Anal Chem; 2018 Jun; 90(11):6651-6659. PubMed ID: 29742898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic carrageenan functionalized magnetic carbon-based framework linked by silane coupling agent for the enrichment of N-glycopeptides from human saliva.
    Jin X; Zhu C; Wu J; Yan Y; Ding CF; Tang K; Zhang D
    J Sep Sci; 2021 May; 44(10):2143-2152. PubMed ID: 33734567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous graphene oxide/chitosan beads with honeycomb-biomimetic microchannels as hydrophilic adsorbent for the selective capture of glycopeptides.
    Li K; Zhao B; Yu Q; Xu J; Li X; Wei D; Qian L; Liu G; Wang W
    Mikrochim Acta; 2020 May; 187(6):324. PubMed ID: 32399726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione-modified ordered mesoporous silicas for enrichment of N-linked glycopeptides by hydrophilic interaction chromatography.
    Tian Y; Tang R; Liu L; Yu Y; Ma S; Gong B; Ou J
    Talanta; 2020 Sep; 217():121082. PubMed ID: 32498907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides.
    Li J; Wang F; Wan H; Liu J; Liu Z; Cheng K; Zou H
    J Chromatogr A; 2015 Dec; 1425():213-20. PubMed ID: 26607318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides.
    Feng X; Deng C; Gao M; Yan G; Zhang X
    Talanta; 2018 Mar; 179():377-385. PubMed ID: 29310248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic Nanocomposite Functionalized by Carrageenan for the Specific Enrichment of Glycopeptides.
    Chen Y; Sheng Q; Hong Y; Lan M
    Anal Chem; 2019 Mar; 91(6):4047-4054. PubMed ID: 30794378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New GO-PEI-Au-L-Cys ZIC-HILIC composites: synthesis and selective enrichment of glycopeptides.
    Jiang B; Liang Y; Wu Q; Jiang H; Yang K; Zhang L; Liang Z; Peng X; Zhang Y
    Nanoscale; 2014 Jun; 6(11):5616-9. PubMed ID: 24752239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides.
    Huang G; Xiong Z; Qin H; Zhu J; Sun Z; Zhang Y; Peng X; ou J; Zou H
    Anal Chim Acta; 2014 Jan; 809():61-8. PubMed ID: 24418134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic titanium dioxide nanomaterial modified with hydrophilic dicarboxylic ligand for effective enrichment and separation of phosphopeptides and glycopeptides.
    Sun N; Wu H; Shen X
    Mikrochim Acta; 2020 Mar; 187(3):195. PubMed ID: 32124063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly selective hydrophilic sorbent for enrichment of N-linked glycopeptides.
    Peng Y; Fu D; Zhang F; Yang B; Yu L; Liang X
    J Chromatogr A; 2016 Aug; 1460():197-201. PubMed ID: 27432787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient and selective enrichment of glycopeptides using easily synthesized magG/PDA/Au/l-Cys composites.
    Wu R; Li L; Deng C
    Proteomics; 2016 May; 16(9):1311-20. PubMed ID: 26888493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boronic acid functionalized MOFs as HILIC material for N-linked glycopeptide enrichment.
    Saleem S; Sajid MS; Hussain D; Jabeen F; Najam-Ul-Haq M; Saeed A
    Anal Bioanal Chem; 2020 Mar; 412(7):1509-1520. PubMed ID: 32002580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient strategy with a synergistic effect of hydrophilic and electrostatic interactions for simultaneous enrichment of
    Hu Z; Gao W; Liu R; Yang J; Han R; Li J; Yu J; Ma D; Tang K
    Analyst; 2024 Feb; 149(4):1090-1101. PubMed ID: 38131340
    [No Abstract]   [Full Text] [Related]  

  • 20. Multiply-mesoporous hydrophilic titanium dioxide nanohybrid for the highly-performed enrichment of N-glycopeptides from human serum.
    Lin Y; Du C; Ying H; Zhou Y; Kong F; Zhao H; Lan M
    Anal Chim Acta; 2024 Jan; 1287():342058. PubMed ID: 38182336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.