BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31378117)

  • 1. Innate immunity of surfactant protein A in experimental otitis media.
    Abdel-Razek O; Ni L; Yang F; Wang G
    Innate Immun; 2019 Oct; 25(7):391-400. PubMed ID: 31378117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NOD1/NOD2-mediated recognition of non-typeable
    Lee J; Leichtle A; Zuckerman E; Pak K; Spriggs M; Wasserman SI; Kurabi A
    Innate Immun; 2019 Nov; 25(8):503-512. PubMed ID: 31474163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of surfactant Protein-A in the Haemophilus influenzae-induced otitis media in a rat model.
    Yu GH; Kim HB; Ko SH; Kim YW; Lim YS; Park SW; Cho CG; Park JH
    Int J Pediatr Otorhinolaryngol; 2018 Sep; 112():61-66. PubMed ID: 30055742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Otitis Media and Nasopharyngeal Colonization in
    Deniffel D; Nuyen B; Pak K; Suzukawa K; Hung J; Kurabi A; Wasserman SI; Ryan AF
    Infect Immun; 2017 Nov; 85(11):. PubMed ID: 28847849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inflammasome adaptor ASC contributes to multiple innate immune processes in the resolution of otitis media.
    Kurabi A; Lee J; Wong C; Pak K; Hoffman HM; Ryan AF; Wasserman SI
    Innate Immun; 2015 Feb; 21(2):203-14. PubMed ID: 24652041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolytic Metabolism Is Critical for the Innate Antibacterial Defense in Acute
    Fan F; Ma Y; Ai R; Ding Z; Li D; Zhu Y; He Q; Zhang X; Dong Y; He Y
    Front Immunol; 2021; 12():624775. PubMed ID: 33953708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media.
    Hirano T; Kodama S; Fujita K; Maeda K; Suzuki M
    FEMS Immunol Med Microbiol; 2007 Feb; 49(1):75-83. PubMed ID: 17266713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid differentiation primary response gene 88 is required for the resolution of otitis media.
    Hernandez M; Leichtle A; Pak K; Ebmeyer J; Euteneuer S; Obonyo M; Guiney DG; Webster NJ; Broide DH; Ryan AF; Wasserman SI
    J Infect Dis; 2008 Dec; 198(12):1862-9. PubMed ID: 18986247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcriptome of a complete episode of acute otitis media.
    Hernandez M; Leichtle A; Pak K; Webster NJ; Wasserman SI; Ryan AF
    BMC Genomics; 2015 Apr; 16(1):259. PubMed ID: 25888408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal studies of experimental otitis media with Haemophilus influenzae in the gerbil.
    Fulghum RS; Hoogmoed RP; Brinn JE
    Int J Pediatr Otorhinolaryngol; 1985 Jul; 9(2):101-14. PubMed ID: 3875586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Surfactant Protein D in Experimental Otitis Media.
    Abdel-Razek O; Liu T; Chen X; Wang Q; Vanga G; Wang G
    J Innate Immun; 2021; 13(4):197-210. PubMed ID: 33556949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Regulatory T Cells and Chronic Inflammation in the Middle Ear in a Mouse Model of Chronic Otitis Media with Effusion Induced by Combined Eustachian Tube Blockage and Nontypeable Haemophilus influenzae Infection.
    Hirano T; Kodama S; Kawano T; Suzuki M
    Infect Immun; 2016 Jan; 84(1):356-64. PubMed ID: 26553466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CC chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of macrophages and hastens recovery from experimental otitis media in TNF-/- mice.
    Leichtle A; Hernandez M; Ebmeyer J; Yamasaki K; Lai Y; Radek K; Choung YH; Euteneuer S; Pak K; Gallo R; Wasserman SI; Ryan AF
    J Immunol; 2010 Mar; 184(6):3087-97. PubMed ID: 20164426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of beta-defensins in the tubotympanum of experimental otitis media.
    Jin Shin D; Gan-Undram S; Jin Kim S; Joon Jun Y; Jung Im G; Hyun Jung H
    Acta Otolaryngol; 2006 Oct; 126(10):1040-5. PubMed ID: 16923707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of the hyaluronan receptor CD44 affects the course of bacterial otitis media and reduces leukocyte recruitment to the middle ear.
    Lim HW; Pak K; Kurabi A; Ryan AF
    BMC Immunol; 2019 Jun; 20(1):20. PubMed ID: 31226944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of DNA sensing and innate immune receptor TLR9 in otitis media.
    Leichtle A; Hernandez M; Lee J; Pak K; Webster NJ; Wollenberg B; Wasserman SI; Ryan AF
    Innate Immun; 2012 Feb; 18(1):3-13. PubMed ID: 21239460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of group 3 innate lymphoid cells during experimental otitis media in a rat model.
    Cho CG; Gong SH; Kim HB; Song JJ; Park JH; Lim YS; Park SW
    Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():146-52. PubMed ID: 27497403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-17A Aggravates Middle Ear Injury Induced by Streptococcus pneumoniae through the p38 Mitogen-Activated Protein Kinase Signaling Pathway.
    Wang W; Liu W; Liu J; Wang Z; Fan F; Ma Y; Jin C; Xiang Y; Huang Y; Zhang X; Xu W; Yin Y; He Y
    Infect Immun; 2017 Oct; 85(10):. PubMed ID: 28739823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Course of IL-1beta, IL-6, IL-8, and TNF-alpha in the middle ear fluid of the guinea pig otitis media model induced by nonviable Haemophilus influenzae.
    Sato K; Kawana M; Nonomura N; Nakano Y
    Ann Otol Rhinol Laryngol; 1999 Jun; 108(6):559-63. PubMed ID: 10378523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular content plays a crucial role in Non-typeable Haemophilus influenzae infection of preinflamed Junbo mouse middle ear.
    Vikhe PP; Purnell T; Brown SDM; Hood DW
    Cell Microbiol; 2019 Jan; 21(1):e12960. PubMed ID: 30265765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.