These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31378610)

  • 1. Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries.
    Gofman X; Tocker G; Weiss S; Boccara CN; Lu L; Moser MB; Moser EI; Morris G; Derdikman D
    Curr Biol; 2019 Aug; 29(16):2751-2757.e4. PubMed ID: 31378610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding.
    van Wijngaarden JB; Babl SS; Ito HT
    Elife; 2020 Nov; 9():. PubMed ID: 33138915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sense of space in postrhinal cortex.
    LaChance PA; Todd TP; Taube JS
    Science; 2019 Jul; 365(6449):. PubMed ID: 31296737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners.
    Wang C; Lee H; Rao G; Doreswamy Y; Savelli F; Knierim JJ
    Hippocampus; 2023 May; 33(5):448-464. PubMed ID: 36965194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation.
    Rolls ET
    Hippocampus; 2020 Apr; 30(4):332-353. PubMed ID: 31697002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Egocentric and allocentric visuospatial working memory in premotor Huntington's disease: A double dissociation with caudate and hippocampal volumes.
    Possin KL; Kim H; Geschwind MD; Moskowitz T; Johnson ET; Sha SJ; Apple A; Xu D; Miller BL; Finkbeiner S; Hess CP; Kramer JH
    Neuropsychologia; 2017 Jul; 101():57-64. PubMed ID: 28427989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations.
    Kuruvilla MV; Wilson DIG; Ainge JA
    Brain Neurosci Adv; 2020; 4():2398212820939463. PubMed ID: 32954005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Anchoring of Head Direction in a Computational Model of Retrosplenial Cortex.
    Bicanski A; Burgess N
    J Neurosci; 2016 Nov; 36(46):11601-11618. PubMed ID: 27852770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theory of geometry representations for spatial navigation.
    Zeng T; Si B; Feng J
    Prog Neurobiol; 2022 Apr; 211():102228. PubMed ID: 35091029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus.
    Alexander AS; Robinson JC; Stern CE; Hasselmo ME
    Hippocampus; 2023 May; 33(5):465-487. PubMed ID: 36861201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Egocentric coding of external items in the lateral entorhinal cortex.
    Wang C; Chen X; Lee H; Deshmukh SS; Yoganarasimha D; Savelli F; Knierim JJ
    Science; 2018 Nov; 362(6417):945-949. PubMed ID: 30467169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The parahippocampal region: corticocortical connectivity.
    Burwell RD
    Ann N Y Acad Sci; 2000 Jun; 911():25-42. PubMed ID: 10911865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
    Hargreaves EL; Yoganarasimha D; Knierim JJ
    Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex.
    Wilber AA; Clark BJ; Forster TC; Tatsuno M; McNaughton BL
    J Neurosci; 2014 Apr; 34(16):5431-46. PubMed ID: 24741034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze.
    Weniger G; Siemerkus J; Schmidt-Samoa C; Mehlitz M; Baudewig J; Dechent P; Irle E
    Neurobiol Learn Mem; 2010 Jan; 93(1):46-55. PubMed ID: 19683063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices.
    Furtak SC; Wei SM; Agster KL; Burwell RD
    Hippocampus; 2007; 17(9):709-22. PubMed ID: 17604355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for transforming egocentric views into goal-directed behavior.
    LaChance PA; Taube JS
    Hippocampus; 2023 May; 33(5):488-504. PubMed ID: 36780179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural mechanisms of navigation involving interactions of cortical and subcortical structures.
    Hinman JR; Dannenberg H; Alexander AS; Hasselmo ME
    J Neurophysiol; 2018 Jun; 119(6):2007-2029. PubMed ID: 29442559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angular and linear speed cells in the parahippocampal circuits.
    Spalla D; Treves A; Boccara CN
    Nat Commun; 2022 Apr; 13(1):1907. PubMed ID: 35393433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial representation in the entorhinal cortex.
    Fyhn M; Molden S; Witter MP; Moser EI; Moser MB
    Science; 2004 Aug; 305(5688):1258-64. PubMed ID: 15333832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.