These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 31379298)
1. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. Yongky A; Xu J; Tian J; Oliveira C; Zhao J; McFarland K; Borys MC; Li ZJ MAbs; 2019; 11(8):1502-1514. PubMed ID: 31379298 [TBL] [Abstract][Full Text] [Related]
2. Fed-batch performance profiles for mAb production using different intensified N - 1 seed strategies are CHO cell-line dependent. Tang Y; Xu J; Xu M; Huang Z; Santos J; He Q; Borys M; Khetan A Biotechnol Prog; 2024; 40(4):e3446. PubMed ID: 38415506 [TBL] [Abstract][Full Text] [Related]
3. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related]
4. An automated high inoculation density fed-batch bioreactor, enabled through N-1 perfusion, accommodates clonal diversity and doubles titers. Olin M; Wolnick N; Crittenden H; Quach A; Russell B; Hendrick S; Armstrong J; Webster T; Hadley B; Dickson M; Hodgkins J; Busa K; Connolly R; Downey B Biotechnol Prog; 2024; 40(2):e3410. PubMed ID: 38013663 [TBL] [Abstract][Full Text] [Related]
5. "Organized stress" for robust scale-up of intensified production process with fed-batch seed bioreactor. Ben Yahia B; Piednoir A; Dahomais T; Eggermont S; Paul W Biotechnol Bioeng; 2023 Sep; 120(9):2509-2522. PubMed ID: 37027375 [TBL] [Abstract][Full Text] [Related]
6. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Xu S; Gavin J; Jiang R; Chen H Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910 [TBL] [Abstract][Full Text] [Related]
7. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. Xu J; Xu X; Huang C; Angelo J; Oliveira CL; Xu M; Xu X; Temel D; Ding J; Ghose S; Borys MC; Li ZJ MAbs; 2020 Jan; 12(1):1770669. PubMed ID: 32425110 [TBL] [Abstract][Full Text] [Related]
8. N-1 Perfusion Platform Development Using a Capacitance Probe for Biomanufacturing. Rittershaus ESC; Rehmann MS; Xu J; He Q; Hill C; Swanberg J; Borys MC; Li ZJ; Khetan A Bioengineering (Basel); 2022 Mar; 9(4):. PubMed ID: 35447688 [TBL] [Abstract][Full Text] [Related]
9. Developing an ultra-intensified fed-batch cell culture process with greatly improved performance and productivity. Xiang S; Zhang J; Yu L; Tian J; Tang W; Tang H; Xu K; Wang X; Cui Y; Ren K; Cao W; Su Y; Zhou W Biotechnol Bioeng; 2024 Feb; 121(2):696-709. PubMed ID: 37994547 [TBL] [Abstract][Full Text] [Related]
10. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Qin J; Wu X; Xia Z; Huang Z; Zhang Y; Wang Y; Fu Q; Zheng C Appl Microbiol Biotechnol; 2019 Feb; 103(3):1217-1229. PubMed ID: 30554388 [TBL] [Abstract][Full Text] [Related]
11. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
12. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Lin H; Leighty RW; Godfrey S; Wang SB Biotechnol Prog; 2017 Jul; 33(4):891-901. PubMed ID: 28371394 [TBL] [Abstract][Full Text] [Related]
14. Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology. Stepper L; Filser FA; Fischer S; Schaub J; Gorr I; Voges R Bioprocess Biosyst Eng; 2020 Aug; 43(8):1431-1443. PubMed ID: 32266469 [TBL] [Abstract][Full Text] [Related]
15. Automation of high CHO cell density seed intensification via online control of the cell specific perfusion rate and its impact on the N-stage inoculum quality. Schulze M; Lemke J; Pollard D; Wijffels RH; Matuszczyk J; Martens DE J Biotechnol; 2021 Jul; 335():65-75. PubMed ID: 34090946 [TBL] [Abstract][Full Text] [Related]
16. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology? Kelley B; Kiss R; Laird M Adv Biochem Eng Biotechnol; 2018; 165():443-462. PubMed ID: 29721583 [TBL] [Abstract][Full Text] [Related]
17. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
18. Rapid intensification of an established CHO cell fed-batch process. Schulze M; Niemann J; Wijffels RH; Matuszczyk J; Martens DE Biotechnol Prog; 2022 Jan; 38(1):e3213. PubMed ID: 34542245 [TBL] [Abstract][Full Text] [Related]
19. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch. Särnlund S; Jiang Y; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3533-3544. PubMed ID: 33914903 [TBL] [Abstract][Full Text] [Related]
20. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Hiller GW; Ovalle AM; Gagnon MP; Curran ML; Wang W Biotechnol Bioeng; 2017 Jul; 114(7):1438-1447. PubMed ID: 28128436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]