BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31379588)

  • 1. Exploring the Extracellular Regulation of the Tumor Angiogenic Interaction Network Using a Systems Biology Model.
    Li D; Finley SD
    Front Physiol; 2019; 10():823. PubMed ID: 31379588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.
    Rohrs JA; Sulistio CD; Finley SD
    NPJ Syst Biol Appl; 2016; 2():16030-. PubMed ID: 28713587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment.
    Li D; Finley SD
    Integr Biol (Camb); 2018 Apr; 10(4):253-269. PubMed ID: 29623971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors.
    Song M; Finley SD
    BMC Syst Biol; 2018 Dec; 12(1):145. PubMed ID: 30591051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production.
    Litwin M; Radwańska A; Paprocka M; Kieda C; Dobosz T; Witkiewicz W; Baczyńska D
    Mol Cell Biochem; 2015 Dec; 410(1-2):131-42. PubMed ID: 26314253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
    Gacche RN; Meshram RJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist.
    Alessi P; Leali D; Camozzi M; Cantelmo A; Albini A; Presta M
    Eur Cytokine Netw; 2009 Dec; 20(4):225-34. PubMed ID: 20167562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization.
    Chai YC; Mendes LF; van Gastel N; Carmeliet G; Luyten FP
    Acta Biomater; 2018 May; 72():447-460. PubMed ID: 29626696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Biological implications in neovascularization.
    Rusnati M; Presta M
    Int J Clin Lab Res; 1996; 26(1):15-23. PubMed ID: 8739851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors.
    Fernando NT; Koch M; Rothrock C; Gollogly LK; D'Amore PA; Ryeom S; Yoon SS
    Clin Cancer Res; 2008 Mar; 14(5):1529-39. PubMed ID: 18316578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical Modeling of Cellular Cross-Talk Between Endothelial and Tumor Cells Highlights Counterintuitive Effects of VEGF-Targeted Therapies.
    Jain H; Jackson T
    Bull Math Biol; 2018 May; 80(5):971-1016. PubMed ID: 28439752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells.
    Mousa SA; Lorelli W; Campochiaro PA
    J Cell Biochem; 1999 Jul; 74(1):135-43. PubMed ID: 10381270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release.
    van Mil A; Grundmann S; Goumans MJ; Lei Z; Oerlemans MI; Jaksani S; Doevendans PA; Sluijter JP
    Cardiovasc Res; 2012 Mar; 93(4):655-65. PubMed ID: 22227154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling.
    Wu Q; Finley SD
    J Clin Med; 2020 Apr; 9(5):. PubMed ID: 32357492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy.
    Mac Gabhann F; Ji JW; Popel AS
    PLoS Comput Biol; 2006 Sep; 2(9):e127. PubMed ID: 17002494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules.
    Kay NE; Bone ND; Tschumper RC; Howell KH; Geyer SM; Dewald GW; Hanson CA; Jelinek DF
    Leukemia; 2002 May; 16(5):911-9. PubMed ID: 11986954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?
    Antoniades V; Sioga A; Dietrich EM; Meditskou S; Ekonomou L; Antoniades K
    Med Hypotheses; 2013 Dec; 81(6):1159-63. PubMed ID: 24210000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel in vitro assay for human angiogenesis.
    Brown KJ; Maynes SF; Bezos A; Maguire DJ; Ford MD; Parish CR
    Lab Invest; 1996 Oct; 75(4):539-55. PubMed ID: 8874385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer.
    Haibe Y; Kreidieh M; El Hajj H; Khalifeh I; Mukherji D; Temraz S; Shamseddine A
    Front Oncol; 2020; 10():221. PubMed ID: 32175278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor.
    Zhao Y; Adjei AA
    Oncologist; 2015 Jun; 20(6):660-73. PubMed ID: 26001391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.