These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3137967)

  • 21. The function of the nuclear matrix attachment region of silkworm rDNA as an autonomously replicating sequence in plasmid and chromosomal replication origin in yeast.
    Chen Y; Zhao M; Li ZP; He ML
    Biochem Biophys Res Commun; 2002 Dec; 299(5):723-9. PubMed ID: 12470638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-DNA interactions at a yeast replication origin.
    Diffley JF; Cocker JH
    Nature; 1992 May; 357(6374):169-72. PubMed ID: 1579168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription through the yeast origin of replication ARS1 ends at the ABFI binding site and affects extrachromosomal maintenance of minichromosomes.
    Tanaka S; Halter D; Livingstone-Zatchej M; Reszel B; Thoma F
    Nucleic Acids Res; 1994 Sep; 22(19):3904-10. PubMed ID: 7937110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic force microscopic analysis of the binding of the Schizosaccharomyces pombe origin recognition complex and the spOrc4 protein with origin DNA.
    Gaczynska M; Osmulski PA; Jiang Y; Lee JK; Bermudez V; Hurwitz J
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17952-7. PubMed ID: 15598736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ade6 gene of the fission yeast Schizosaccharomyces pombe has the same chromatin structure in the chromosome and in plasmids.
    Bernardi F; Koller T; Thoma F
    Yeast; 1991; 7(6):547-58. PubMed ID: 1767586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong nucleosomes of yeasts.
    Trifonov EN; Tripathi V
    J Biomol Struct Dyn; 2016; 34(2):439-47. PubMed ID: 25893982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosomal footprinting of transcriptionally active and inactive oocyte-type 5S RNA genes of Xenopus laevis.
    Engelke DR; Gottesfeld JM
    Nucleic Acids Res; 1990 Oct; 18(20):6031-7. PubMed ID: 2235485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer.
    Diffley JF; Stillman B
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2120-4. PubMed ID: 3281162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scarcity of ars sequences isolated in a morphogenesis mutant of the yeast Yarrowia lipolytica.
    Fournier P; Guyaneux L; Chasles M; Gaillardin C
    Yeast; 1991 Jan; 7(1):25-36. PubMed ID: 2021082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA helical stability accounts for mutational defects in a yeast replication origin.
    Natale DA; Schubert AE; Kowalski D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(7):2654-8. PubMed ID: 1557369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The yeast GAL1-10 UAS region readily accepts nucleosomes in vitro.
    Rainbow M; Lopez J; Lohr D
    Biochemistry; 1989 Sep; 28(18):7486-90. PubMed ID: 2819082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions.
    Lee MS; Garrard WT
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9166-70. PubMed ID: 1409619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cleavage of chromatin with methidiumpropyl-EDTA . iron(II).
    Cartwright IL; Hertzberg RP; Dervan PB; Elgin SC
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3213-7. PubMed ID: 6407008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and characterization of the Saccharomyces cerevisiae SAB1 gene that suppresses a temperature-sensitive phenotype of the ARS-binding factor 1 mutant.
    So IS; Rhode PR; Campbell JL; Kim J
    Mol Cells; 1997 Aug; 7(4):532-6. PubMed ID: 9339899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis of Igf-2/H19 imprinted domain: identification of a highly conserved intergenic DNase I hypersensitive region.
    Koide T; Ainscough J; Wijgerde M; Surani MA
    Genomics; 1994 Nov; 24(1):1-8. PubMed ID: 7896263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Native genomic blotting: high-resolution mapping of DNase I-hypersensitive sites and protein-DNA interactions.
    Pauli U; Chrysogelos S; Stein J; Stein G
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):16-20. PubMed ID: 3422413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer.
    Längst G; Schätz T; Langowski J; Grummt I
    Nucleic Acids Res; 1997 Feb; 25(3):511-7. PubMed ID: 9016589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin structure at the 44D larval cuticle gene locus in Drosophila: the effect of a transposable element insertion.
    Eissenberg JC; Kimbrell DA; Fristrom JW; Elgin SC
    Nucleic Acids Res; 1984 Dec; 12(23):9025-38. PubMed ID: 6096816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II).
    Van Dyke MW; Dervan PB
    Biochemistry; 1983 May; 22(10):2373-7. PubMed ID: 6222762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.