BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 31379876)

  • 1. An IL-4/21 Inverted Cytokine Receptor Improving CAR-T Cell Potency in Immunosuppressive Solid-Tumor Microenvironment.
    Wang Y; Jiang H; Luo H; Sun Y; Shi B; Sun R; Li Z
    Front Immunol; 2019; 10():1691. PubMed ID: 31379876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer.
    Mohammed S; Sukumaran S; Bajgain P; Watanabe N; Heslop HE; Rooney CM; Brenner MK; Fisher WE; Leen AM; Vera JF
    Mol Ther; 2017 Jan; 25(1):249-258. PubMed ID: 28129119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of IL-4/IL-15-based inverted cytokine receptor in CAR-T cells overcomes IL-4 signaling in immunosuppressive pancreatic tumor microenvironment.
    Zhou Y; Farooq MA; Ajmal I; He C; Gao Y; Guo D; Duan Y; Jiang W
    Biomed Pharmacother; 2023 Dec; 168():115740. PubMed ID: 37865999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesothelin CAR-T cells expressing tumor-targeted immunocytokine IL-12 yield durable efficacy and fewer side effects.
    Zhu Y; Wang K; Yue L; Zuo D; Sheng J; Lan S; Zhao Z; Dong S; Hu S; Chen X; Feng M
    Pharmacol Res; 2024 May; 203():107186. PubMed ID: 38641176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Armed with IL-2 based fusion protein improves CAR-T cell fitness and efficacy against solid tumors.
    Li S; Xia Y; Hou R; Wang X; Zhao X; Guan Z; Ma W; Xu Y; Zhang W; Liu D; Zheng J; Shi M
    Biochim Biophys Acta Mol Basis Dis; 2024 Jun; 1870(5):167159. PubMed ID: 38583815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells.
    Gowrishankar K; Birtwistle L; Micklethwaite K
    Mamm Genome; 2018 Dec; 29(11-12):739-756. PubMed ID: 29987406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-Edited Interleukin CAR-T Cells Therapy in the Treatment of Malignancies: Present and Future.
    Zhang Z; Miao L; Ren Z; Tang F; Li Y
    Front Immunol; 2021; 12():718686. PubMed ID: 34386015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies.
    Zhang ZZ; Wang T; Wang XF; Zhang YQ; Song SX; Ma CQ
    Pharmacol Res; 2022 Jan; 175():106036. PubMed ID: 34920118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Not Available].
    Alcazer V; Delenda C; Poirot L; Depil S
    Bull Cancer; 2018 Dec; 105 Suppl 2():S178-S187. PubMed ID: 30686356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric cytokine receptor enhancing PSMA-CAR-T cell-mediated prostate cancer regression.
    Weimin S; Abula A; Qianghong D; Wenguang W
    Cancer Biol Ther; 2020 Jun; 21(6):570-580. PubMed ID: 32208880
    [No Abstract]   [Full Text] [Related]  

  • 11. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy.
    Siegler EL; Wang P
    Hum Gene Ther; 2018 May; 29(5):534-546. PubMed ID: 29390873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells.
    Elahi R; Khosh E; Tahmasebi S; Esmaeilzadeh A
    Front Immunol; 2018; 9():1717. PubMed ID: 30108584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chimeric cytokine receptor that captures IL-6 and enhances the antitumor response of CAR-T cells.
    Yoshikawa T; Ito Y; Wu Z; Kasuya H; Nakashima T; Okamoto S; Amaishi Y; Zhang H; Li Y; Matsukawa T; Inoue S; Kagoya Y
    Cell Rep Med; 2024 May; 5(5):101526. PubMed ID: 38670095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment.
    Yeku OO; Purdon TJ; Koneru M; Spriggs D; Brentjens RJ
    Sci Rep; 2017 Sep; 7(1):10541. PubMed ID: 28874817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable Porous Microchips with Oxygen Reservoirs and an Immune-Niche Enhance the Efficacy of CAR T Cell Therapy in Solid Tumors.
    Luo Z; Liu Z; Liang Z; Pan J; Xu J; Dong J; Bai Y; Deng H; Wei S
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):56712-56722. PubMed ID: 33306365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered Cytokine Signaling to Improve CAR T Cell Effector Function.
    Bell M; Gottschalk S
    Front Immunol; 2021; 12():684642. PubMed ID: 34177932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanisms of resistance and escape to CAR-T cells].
    Grinda T; Brouard J; Tran D; Rubio MT
    Bull Cancer; 2021 Oct; 108(10S):S128-S140. PubMed ID: 34920795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric antigen receptor T-cell therapy for cancer: a basic research-oriented perspective.
    Han C; Kwon BS
    Immunotherapy; 2018 Mar; 10(3):221-234. PubMed ID: 29370727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical investigation of CAR T cells for solid tumors: Lessons learned and future directions.
    Bagley SJ; O'Rourke DM
    Pharmacol Ther; 2020 Jan; 205():107419. PubMed ID: 31629009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge.
    Guedan S; Alemany R
    Front Immunol; 2018; 9():2460. PubMed ID: 30405639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.