These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31379897)

  • 1. Management and Characterization of Abiotic Stress via PhénoField
    Beauchêne K; Leroy F; Fournier A; Huet C; Bonnefoy M; Lorgeou J; de Solan B; Piquemal B; Thomas S; Cohan JP
    Front Plant Sci; 2019; 10():904. PubMed ID: 31379897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing crop adaptation to abiotic stress using image-based technologies.
    Al-Tamimi N; Langan P; Bernád V; Walsh J; Mangina E; Negrão S
    Open Biol; 2022 Jun; 12(6):210353. PubMed ID: 35728624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of image-based phenotyping as an adaptive 4.0 technology for studying plant abiotic stress: A bibliometric and literature review.
    Anshori MF; Dirpan A; Sitaresmi T; Rossi R; Farid M; Hairmansis A; Sapta Purwoko B; Suwarno WB; Nugraha Y
    Heliyon; 2023 Nov; 9(11):e21650. PubMed ID: 38027954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat.
    Ren A; Jiang D; Kang M; Wu J; Xiao F; Hou P; Fu X
    Plant Methods; 2022 Jun; 18(1):77. PubMed ID: 35672714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Physiological Phenotyping of Drought-Stressed Pepper Plants Treated With "Productivity-Enhancing" and "Survivability-Enhancing" Biostimulants.
    Dalal A; Bourstein R; Haish N; Shenhar I; Wallach R; Moshelion M
    Front Plant Sci; 2019; 10():905. PubMed ID: 31379898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement.
    Jangra S; Chaudhary V; Yadav RC; Yadav NR
    Phenomics; 2021 Apr; 1(2):31-53. PubMed ID: 36939738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heliaphen, an Outdoor High-Throughput Phenotyping Platform for Genetic Studies and Crop Modeling.
    Gosseau F; Blanchet N; Varès D; Burger P; Campergue D; Colombet C; Gody L; Liévin JF; Mangin B; Tison G; Vincourt P; Casadebaig P; Langlade N
    Front Plant Sci; 2018; 9():1908. PubMed ID: 30700989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize.
    Zaman-Allah M; Vergara O; Araus JL; Tarekegne A; Magorokosho C; Zarco-Tejada PJ; Hornero A; Albà AH; Das B; Craufurd P; Olsen M; Prasanna BM; Cairns J
    Plant Methods; 2015; 11():35. PubMed ID: 26106438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field phenotyping for African crops: overview and perspectives.
    Cudjoe DK; Virlet N; Castle M; Riche AB; Mhada M; Waine TW; Mohareb F; Hawkesford MJ
    Front Plant Sci; 2023; 14():1219673. PubMed ID: 37860243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance.
    Joshi S; Thoday-Kennedy E; Daetwyler HD; Hayden M; Spangenberg G; Kant S
    PLoS One; 2021; 16(7):e0254908. PubMed ID: 34297757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotyping for abiotic stress tolerance in maize.
    Masuka B; Araus JL; Das B; Sonder K; Cairns JE
    J Integr Plant Biol; 2012 Apr; 54(4):238-49. PubMed ID: 22443263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iPOTs: Internet of Things-based pot system controlling optional treatment of soil water condition for plant phenotyping under drought stress.
    Numajiri Y; Yoshino K; Teramoto S; Hayashi A; Nishijima R; Tanaka T; Hayashi T; Kawakatsu T; Tanabata T; Uga Y
    Plant J; 2021 Sep; 107(5):1569-1580. PubMed ID: 34197670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat (
    Lauterberg M; Saranga Y; Deblieck M; Klukas C; Krugman T; Perovic D; Ordon F; Graner A; Neumann K
    Front Plant Sci; 2022; 13():965287. PubMed ID: 36311121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The advantages of functional phenotyping in pre-field screening for drought-tolerant crops.
    Negin B; Moshelion M
    Funct Plant Biol; 2016 Feb; 44(1):107-118. PubMed ID: 32480550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.