These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31380019)

  • 1. Current and future potential distributions of three
    Bogawski P; Damen T; Nowak MM; Pędziwiatr K; Wilkin P; Mwachala G; Pierzchalska J; Wiland-Szymańska J
    Ecol Evol; 2019 Jun; 9(12):6833-6848. PubMed ID: 31380019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MaxEnt Modeling to Predict the Current and Future Distribution of
    Chen K; Wang B; Chen C; Zhou G
    Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
    Yang X; Zheng JH; Mu C; Lin J
    Zhongguo Zhong Yao Za Zhi; 2017 Feb; 42(3):450-455. PubMed ID: 28952248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the current and future distribution potential areas of Peperomia abyssinica Miq., and Helichrysum citrispinum Steud. ex A. Rich. in Ethiopia.
    Daba D; Kagnew B; Tefera B; Nemomissa S
    BMC Ecol Evol; 2023 Dec; 23(1):71. PubMed ID: 38057726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming.
    Ren Z; Zagortchev L; Ma J; Yan M; Li J
    BMC Ecol; 2020 May; 20(1):28. PubMed ID: 32386506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].
    Dai EF; Zhou H; Wu Z; Wang XF; Xi WM; Zhu JJ
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3059-3069. PubMed ID: 29726129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling potential distribution of newly recorded ant, Brachyponera nigrita using Maxent under climate change in Pothwar region, Pakistan.
    Gull E Fareen A; Mahmood T; Bodlah I; Rashid A; Khalid A; Mahmood S
    PLoS One; 2022; 17(1):e0262451. PubMed ID: 35045121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling climate influences on the distribution of the parapatric newts
    Iannella M; Cerasoli F; Biondi M
    Front Zool; 2017; 14():55. PubMed ID: 29255477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effects of climate change on the potential distribution of the rangeland species Gymnocarpus decander Forssk (case study: Arid region of southeastern Iran).
    Narouei M; Javadi SA; Khodagholi M; Jafari M; Azizinejad R
    Environ Monit Assess; 2021 Dec; 194(1):33. PubMed ID: 34923594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.
    Dai E; Wu Z; Ge Q; Xi W; Wang X
    Glob Chang Biol; 2016 Nov; 22(11):3642-3661. PubMed ID: 27029713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change has different predicted effects on the range shifts of two hybridizing ambush bug (
    Zhang VM; Punzalan D; Rowe L
    Ecol Evol; 2020 Nov; 10(21):12036-12048. PubMed ID: 33209268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential distribution of dominant malaria vector species in tropical region under climate change scenarios.
    Akpan GE; Adepoju KA; Oladosu OR
    PLoS One; 2019; 14(6):e0218523. PubMed ID: 31216349
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Ghafouri Moghaddam M; Butcher BA
    Insects; 2023 Mar; 14(4):. PubMed ID: 37103153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry and wet miombo woodlands of south-central Africa respond differently to climate change.
    Jinga P; Palagi J
    Environ Monit Assess; 2020 May; 192(6):372. PubMed ID: 32417982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing distribution changes of selected native and alien invasive plant species under changing climatic conditions in Nyeri County, Kenya.
    Waititu JM; Mundia CN; Sichangi AW
    PLoS One; 2022; 17(10):e0275360. PubMed ID: 36190975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioclimatic modeling in the Last Glacial Maximum, Mid-Holocene and facing future climatic changes in the strawberry tree (Arbutus unedo L.).
    Ribeiro MM; Roque N; Ribeiro S; Gavinhos C; Castanheira I; Quinta-Nova L; Albuquerque T; Gerassis S
    PLoS One; 2019; 14(1):e0210062. PubMed ID: 30625214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global decline in suitable habitat for Angiostrongylus ( = Parastrongylus) cantonensis: the role of climate change.
    York EM; Butler CJ; Lord WD
    PLoS One; 2014; 9(8):e103831. PubMed ID: 25122457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Worldclim 2.1 versus Worldclim 1.4: Climatic niche and grid resolution affect between-version mismatches in Habitat Suitability Models predictions across Europe.
    Cerasoli F; D'Alessandro P; Biondi M
    Ecol Evol; 2022 Feb; 12(2):e8430. PubMed ID: 35222942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.