BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31380092)

  • 1. Oribatid mites reveal that competition for resources and trophic structure combine to regulate the assembly of diverse soil animal communities.
    Magilton M; Maraun M; Emmerson M; Caruso T
    Ecol Evol; 2019 Jul; 9(14):8320-8330. PubMed ID: 31380092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oribatid mite communities in mountain scree: stable isotopes (
    Nae I; Nae A; Scheu S; Maraun M
    Exp Appl Acarol; 2021 Mar; 83(3):375-386. PubMed ID: 33646483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Niche dimensions in soil oribatid mite community assembly under native and introduced tree species.
    Noske JE; Lu JZ; Schaefer I; Maraun M; Scheu S; Chen TW
    Ecol Evol; 2024 May; 14(5):e11431. PubMed ID: 38770121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in trophic niches of oribatid mites in temperate forest ecosystems as indicated by neutral lipid fatty acid patterns.
    Maraun M; Augustin D; Pollierer MM; Scheu S
    Exp Appl Acarol; 2020 May; 81(1):103-115. PubMed ID: 32347428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trophic structure of bark-living oribatid mite communities analysed with stable isotopes ((15)N, (13)C) indicates strong niche differentiation.
    Erdmann G; Otte V; Langel R; Scheu S; Maraun M
    Exp Appl Acarol; 2007; 41(1-2):1-10. PubMed ID: 17333459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trophic structure of a tropical soil- and litter-dwelling oribatid mite community and consistency of trophic niches across biomes.
    Tsurikov SM; Ermilov SG; Tiunov AV
    Exp Appl Acarol; 2019 May; 78(1):29-48. PubMed ID: 31089979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem.
    Fischer BM; Schatz H; Maraun M
    Exp Appl Acarol; 2010 Nov; 52(3):221-37. PubMed ID: 20490626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites.
    Caruso T; Taormina M; Migliorini M
    J Anim Ecol; 2012 Jan; 81(1):214-21. PubMed ID: 21722106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive correlation of trophic level and proportion of sexual taxa of oribatid mites (Acari: Oribatida) in alpine soil systems.
    Fischer BM; Meyer E; Maraun M
    Exp Appl Acarol; 2014 Aug; 63(4):465-79. PubMed ID: 24687174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling community patterns and trophic niches of tropical and temperate ants using an integrative framework of field data, stable isotopes and fatty acids.
    Rosumek FB; Blüthgen N; Brückner A; Menzel F; Gebauer G; Heethoff M
    PeerJ; 2018; 6():e5467. PubMed ID: 30155364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales.
    Lindo Z; Winchester NN
    Oecologia; 2009 Jul; 160(4):817-25. PubMed ID: 19412624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis.
    Stefan LM; Gómez-Díaz E; Elguero E; Proctor HC; McCoy KD; González-Solís J
    PLoS One; 2015; 10(12):e0144728. PubMed ID: 26650672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The joint effects of local, climatic, and spatial variables determine soil oribatid mite community assembly along a temperate forest elevational gradient.
    Liu D; Wu H
    Ecol Evol; 2024 Jul; 14(7):e11590. PubMed ID: 38966244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersal patterns of oribatid mites across habitats and seasons.
    Cordes PH; Maraun M; Schaefer I
    Exp Appl Acarol; 2022 Feb; 86(2):173-187. PubMed ID: 35038077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift in trophic niches of soil microarthropods with conversion of tropical rainforest into plantations as indicated by stable isotopes (15N, 13C).
    Krause A; Sandmann D; Bluhm SL; Ermilov S; Widyastuti R; Haneda NF; Scheu S; Maraun M
    PLoS One; 2019; 14(10):e0224520. PubMed ID: 31652281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trophic niche partitioning between two prey and their incidental predators revealed various threats for an endangered species.
    Rioux È; Pelletier F; St-Laurent MH
    Ecol Evol; 2022 Mar; 12(3):e8742. PubMed ID: 35342591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population asynchrony alone does not explain stability in species-rich soil animal assemblages: The stabilizing role of forest age on oribatid mite communities.
    Caruso T; Melecis V; Kagainis U; Bolger T
    J Anim Ecol; 2020 Jun; 89(6):1520-1531. PubMed ID: 32153026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic food web expansion and trophic redundancy along the Rocky Mountain-Great Plains ecotone.
    Maitland BM; Rahel FJ
    Ecology; 2023 Jul; 104(7):e4103. PubMed ID: 37203414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Framework for community functioning: synthesis of stress gradient and resource partitioning concepts.
    Passy SI
    PeerJ; 2017; 5():e3885. PubMed ID: 29018618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.