These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31380172)

  • 61. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage.
    Xu X; Wang G
    Small; 2022 Apr; 18(16):e2107473. PubMed ID: 35132792
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular Photoelectrochemical Energy Storage Materials for Coupled Solar Batteries.
    Zhang X; Jiao L; Wang Y
    Acc Chem Res; 2024 Jun; 57(12):1736-1746. PubMed ID: 38836507
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Light-harvesting and photoisomerization in benzophenone and norbornadiene-labeled poly(aryl ether) dendrimers via intramolecular triplet energy transfer.
    Chen J; Li S; Zhang L; Liu B; Han Y; Yang G; Li Y
    J Am Chem Soc; 2005 Feb; 127(7):2165-71. PubMed ID: 15713094
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release.
    Xu X; Wu B; Zhang P; Xing Y; Shi K; Fang W; Yu H; Wang G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22655-22663. PubMed ID: 33970599
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conversion of intramolecular singlet electron transfer at room temperature into triplet energy transfer at 77 K: photoisomerization in norbornadiene- and carbazole-labeled poly(aryl ether) dendrimers.
    Chen J; Chen J; Li S; Zhang L; Yang G; Li Y
    J Phys Chem B; 2006 Mar; 110(10):4663-70. PubMed ID: 16526699
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Status and challenges for molecular solar thermal energy storage system based devices.
    Wang Z; Hölzel H; Moth-Poulsen K
    Chem Soc Rev; 2022 Aug; 51(17):7313-7326. PubMed ID: 35726574
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.
    Kucharski TJ; Ferralis N; Kolpak AM; Zheng JO; Nocera DG; Grossman JC
    Nat Chem; 2014 May; 6(5):441-7. PubMed ID: 24755597
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surface Chemistry of the Molecular Solar Thermal Energy Storage System 2,3-Dicyano-Norbornadiene/Quadricyclane on Ni(111).
    Hemauer F; Bauer U; Fromm L; Weiß C; Leng A; Bachmann P; Düll F; Steinhauer J; Schwaab V; Grzonka R; Hirsch A; Görling A; Steinrück HP; Papp C
    Chemphyschem; 2022 Aug; 23(16):e202200552. PubMed ID: 35980112
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solar Azo-Switches for Effective E→Z Photoisomerization by Sunlight.
    Zhang ZY; Dong D; Bösking T; Dang T; Liu C; Sun W; Xie M; Hecht S; Li T
    Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202404528. PubMed ID: 38722260
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Understanding Solid-State Photochemical Energy Storage in Polymers with Azobenzene Side Groups.
    Wallace C; Griffiths K; Dale BL; Roberts S; Parsons J; Griffin JM; Görtz V
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31787-31794. PubMed ID: 37350514
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage.
    Gray V; Lennartson A; Ratanalert P; Börjesson K; Moth-Poulsen K
    Chem Commun (Camb); 2014 May; 50(40):5330-2. PubMed ID: 24280803
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Applications of different types of heat pipes in solar desalinations: A comprehensive review.
    Ben Bacha H; Nazari MA; Ullah N; Shah NA
    Water Sci Technol; 2024 Apr; 89(8):2044-2059. PubMed ID: 38678408
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A simple high-intensity UV-photon source for photochemical studies in UHV: Application to the photoconversion of norbornadiene to quadricyclane.
    Schwarz M; Schuschke C; Silva TN; Mohr S; Waidhas F; Brummel O; Libuda J
    Rev Sci Instrum; 2019 Feb; 90(2):024105. PubMed ID: 30831747
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phenothiazine-Based Donor-Acceptor Polymers as Multifunctional Materials for Charge Storage and Solar Energy Conversion.
    Wessling R; Delgado Andrés R; Morhenn I; Acker P; Maftuhin W; Walter M; Würfel U; Esser B
    Macromol Rapid Commun; 2024 Jan; 45(1):e2200699. PubMed ID: 36333908
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts.
    Chang C; Wang Z; Fu B; Ji Y
    Sci Rep; 2020 Nov; 10(1):20500. PubMed ID: 33235267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.