These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31380339)

  • 21. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical study of surface-enhanced Raman scattering mechanism of scandium-doped copper/silver clusters.
    Li Q; Li X; He D; Chen S; Chen M; Wang L; Liu Y; Wang M
    Nanotechnology; 2020 Apr; 31(28):285201. PubMed ID: 32197266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond the Charge Transfer Mechanism for 2D Materials-Assisted Surface Enhanced Raman Scattering.
    Wang S; Wei Y; Zheng S; Zhang Z; Tang X; Liang L; Zang Z; Qian Q
    Anal Chem; 2024 Jun; 96(24):9917-9926. PubMed ID: 38837181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Raman and SERS spectra of indigo and indigo-Ag
    Ricci M; Lofrumento C; Becucci M; Castellucci EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():141-148. PubMed ID: 28709139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laser-Induced Reactions of 4-Aminobenzenthiol Species Adsorbed on Ag, Au, and Cu Plasmonic Structures Followed by SERS Spectroscopy. The Role of Substrate and Excitation Energy - Surface-Complex Photochemistry and Plasmonic Catalysis.
    Kopal I; Švecová M; Jeřábek V; Palounek D; Čapková T; Michalcová A; Lapčák L; Matějka P; Dendisová M
    ACS Omega; 2024 Feb; 9(5):6005-6017. PubMed ID: 38343947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings.
    Ye J; Hutchison JA; Uji-i H; Hofkens J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Nanoscale; 2012 Mar; 4(5):1606-11. PubMed ID: 22297424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical vibrational Raman and surface-enhanced Raman scattering spectra of water interacting with silver clusters.
    Sanchéz-Lozano M; Mandado M; Pérez-Juste I; Hermida-Ramón JM
    Chemphyschem; 2014 Dec; 15(18):4067-76. PubMed ID: 25263101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering.
    Aldosari FMM
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory.
    Jensen L; Schatz GC
    J Phys Chem A; 2006 May; 110(18):5973-7. PubMed ID: 16671663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro-/Nanostructures.
    Song J; Cheng W; Nie M; He X; Nam W; Cheng J; Zhou W
    ACS Nano; 2020 Aug; 14(8):9521-9531. PubMed ID: 32589403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitation wavelength-dependent SERS and DFT study to probe Herzberg-Teller selection rules on charge-transfer effect.
    Prakash O
    J Chem Phys; 2020 Sep; 153(10):104703. PubMed ID: 32933301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Between plasmonics and surface-enhanced resonant Raman spectroscopy: toward single-molecule strong coupling at a hotspot.
    Itoh T; Yamamoto YS
    Nanoscale; 2021 Jan; 13(3):1566-1580. PubMed ID: 33438716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy.
    Zhang J; Li J; Tang S; Fang Y; Wang J; Huang G; Liu R; Zheng L; Cui X; Mei Y
    Sci Rep; 2015 Oct; 5():15012. PubMed ID: 26443526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.