These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 31380368)

  • 1. Reprogramming the Epigenome With Vitamin C.
    Lee Chong T; Ahearn EL; Cimmino L
    Front Cell Dev Biol; 2019; 7():128. PubMed ID: 31380368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin C in Stem Cell Reprogramming and Cancer.
    Cimmino L; Neel BG; Aifantis I
    Trends Cell Biol; 2018 Sep; 28(9):698-708. PubMed ID: 29724526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating epigenetic memory through vitamins and TET: implications for regenerative medicine and cancer treatment.
    Hore TA
    Epigenomics; 2017 Jun; 9(6):863-871. PubMed ID: 28554227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin D and the epigenome.
    Fetahu IS; Höbaus J; Kállay E
    Front Physiol; 2014; 5():164. PubMed ID: 24808866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbic acid modulates immune responses through Jumonji-C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase.
    Maity J; Majumder S; Pal R; Saha B; Mukhopadhyay PK
    Bioessays; 2023 Nov; 45(11):e2300035. PubMed ID: 37694689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.
    Ebata KT; Mesh K; Liu S; Bilenky M; Fekete A; Acker MG; Hirst M; Garcia BA; Ramalho-Santos M
    Epigenetics Chromatin; 2017; 10():36. PubMed ID: 28706564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbic Acid in Epigenetic Reprogramming.
    Liu X; Khan A; Li H; Wang S; Chen X; Huang H
    Curr Stem Cell Res Ther; 2022; 17(1):13-25. PubMed ID: 34264189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of DNA Methylation Reprogramming Influenced by X Chromosome Dosage in Induced Pluripotent Stem Cells.
    Janiszewski A; Song J; Vanheer L; De Geest N; Pasque V
    Epigenet Insights; 2018; 11():2516865718802931. PubMed ID: 30443643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.
    Eilertsen KJ; Power RA; Harkins LL; Misica P
    Anim Reprod Sci; 2007 Mar; 98(1-2):129-46. PubMed ID: 17166676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.
    Brix J; Zhou Y; Luo Y
    J Genet Genomics; 2015 Dec; 42(12):661-70. PubMed ID: 26743984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of vitamin C in epigenetic cancer therapy.
    Mikkelsen SU; Gillberg L; Lykkesfeldt J; Grønbæk K
    Free Radic Biol Med; 2021 Jul; 170():179-193. PubMed ID: 33789122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming.
    Kovina AP; Petrova NV; Razin SV; Kantidze OL
    Acta Naturae; 2020; 12(4):5-14. PubMed ID: 33456974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells.
    Chung TL; Brena RM; Kolle G; Grimmond SM; Berman BP; Laird PW; Pera MF; Wolvetang EJ
    Stem Cells; 2010 Oct; 28(10):1848-55. PubMed ID: 20687155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic Acid Reprograms Epigenome and Epitranscriptome by Reducing Fe(III) in the Catalytic Cycle of Dioxygenases.
    He W; Yin X; Xu C; Liu X; Huang Y; Yang C; Xu Y; Hu L
    ACS Chem Biol; 2024 Jan; 19(1):129-140. PubMed ID: 38100359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the Epigenome by Vitamin C.
    Young JI; Züchner S; Wang G
    Annu Rev Nutr; 2015; 35():545-64. PubMed ID: 25974700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: involvement of hypoxia-inducible factor 1.
    Ishida T; Nakao S; Ueyama T; Harada Y; Kawamura T
    Inflamm Regen; 2020; 40():8. PubMed ID: 32426078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine.
    Gomes KM; Costa IC; Santos JF; Dourado PM; Forni MF; Ferreira JC
    Rev Assoc Med Bras (1992); 2017 Feb; 63(2):180-189. PubMed ID: 28355380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.
    Hsu YC; Wu YT; Tsai CL; Wei YH
    Exp Biol Med (Maywood); 2018 Mar; 243(6):563-575. PubMed ID: 29557214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylation dynamics in human induced pluripotent stem cells.
    Nishino K; Umezawa A
    Hum Cell; 2016 Jul; 29(3):97-100. PubMed ID: 27083573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Induction: Induced Pluripotent Stem Cells (iPSCs).
    Singh VK; Kumar N; Kalsan M; Saini A; Chandra R
    J Stem Cells; 2015; 10(1):43-62. PubMed ID: 26665937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.