These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31380537)

  • 41. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. All-in-One Sulfur Host: Smart Controls of Architecture and Composition for Accelerated Liquid-Solid Redox Conversion in Lithium-Sulfur Batteries.
    Qin B; Cai Y; Si X; Li C; Cao J; Fei W; Xie H; Qi J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39424-39434. PubMed ID: 34382761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.
    Chen M; Jiang S; Huang C; Wang X; Cai S; Xiang K; Zhang Y; Xue J
    ChemSusChem; 2017 Apr; 10(8):1803-1812. PubMed ID: 28236432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile one-pot synthesis of well-defined coaxial sulfur/polypyrrole tubular nanocomposites as cathodes for long-cycling lithium-sulfur batteries.
    Wei W; Du P; Liu D; Wang Q; Liu P
    Nanoscale; 2018 Jul; 10(27):13037-13044. PubMed ID: 29952387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li-S Batteries.
    Gao P; Xu S; Chen Z; Huang X; Bao Z; Lao C; Wu G; Mei Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3938-3947. PubMed ID: 29309733
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conductive Al-Doped ZnO Framework Embedded with Catalytic Nanocages as a Multistage-Porous Sulfur Host in Lithium-Sulfur Batteries.
    Wen C; Du X; Wu F; Wu L; Li J; Liu G
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44389-44400. PubMed ID: 34495633
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scalable High-Areal-Capacity Li-S Batteries Enabled by Sandwich-Structured Hierarchically Porous Membranes with Intrinsic Polysulfide Adsorption.
    Li X; Zhang Y; Wang S; Liu Y; Ding Y; He G; Jiang X; Xiao W; Yu G
    Nano Lett; 2020 Sep; 20(9):6922-6929. PubMed ID: 32833460
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Energy-Density, Long-Life Lithium-Sulfur Batteries with Practically Necessary Parameters Enabled by Low-Cost Fe-Ni Nanoalloy Catalysts.
    He J; Bhargav A; Manthiram A
    ACS Nano; 2021 May; 15(5):8583-8591. PubMed ID: 33891408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries.
    Zhu X; Li Y; Li R; Tu K; Li J; Xie Z; Lei J; Liu D; Qu D
    J Colloid Interface Sci; 2020 Feb; 559():244-253. PubMed ID: 31630017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CoO/Co-Activated Porous Carbon Cloth Cathode for High Performance Li-S Batteries.
    Ren W; Ma W; Umair MM; Zhang S; Tang B
    ChemSusChem; 2018 Aug; 11(16):2695-2702. PubMed ID: 29981244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries.
    Yang CP; Yin YX; Ye H; Jiang KC; Zhang J; Guo YG
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8789-95. PubMed ID: 24764111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fully integrated hierarchical double-shelled Co
    Zhou J; Liu X; Zhou J; Zhao H; Lin N; Zhu L; Zhu Y; Wang G; Qian Y
    Nanoscale Horiz; 2019 Jan; 4(1):182-189. PubMed ID: 32254154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium-sulfur batteries.
    Liu Z; Li J; Xiang J; Cheng S; Wu H; Zhang N; Yuan L; Zhang W; Xie J; Huang Y; Chang H
    Phys Chem Chem Phys; 2017 Jan; 19(3):2567-2573. PubMed ID: 28059421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries.
    Zhang FF; Huang G; Wang XX; Qin YL; Du XC; Yin DM; Liang F; Wang LM
    Chemistry; 2014 Dec; 20(52):17523-9. PubMed ID: 25346404
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molybdenum Boride as an Efficient Catalyst for Polysulfide Redox to Enable High-Energy-Density Lithium-Sulfur Batteries.
    He J; Bhargav A; Manthiram A
    Adv Mater; 2020 Oct; 32(40):e2004741. PubMed ID: 32864813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fe-cation Doping in NiSe
    Shi L; Fang H; Yang X; Xue J; Li C; Hou S; Hu C
    ChemSusChem; 2021 Apr; 14(7):1710-1719. PubMed ID: 33595904
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.
    Song J; Gordin ML; Xu T; Chen S; Yu Z; Sohn H; Lu J; Ren Y; Duan Y; Wang D
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4325-9. PubMed ID: 25663183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrogen-doped hollow porous carbon nanospheres coated with MnO
    Zhang X; Yang H; Guo J; Zhao S; Gong S; Du X; Zhang F
    Nanotechnology; 2017 Nov; 28(47):475401. PubMed ID: 28952967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relay-Type Catalysis by a Dual-Metal Single-Atom System in a Waste Biomass Derivative Host for High-Rate and Durable Li-S Batteries.
    Wu Q; Chen K; Shadike Z; Li C
    ACS Nano; 2024 May; 18(21):13468-13483. PubMed ID: 38739894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li-S Batteries.
    Kwok CY; Pang Q; Worku A; Liang X; Gauthier M; Nazar LF
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22481-22491. PubMed ID: 31141332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.