These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31380538)

  • 1. High efficiency solar cells tailored using biomass-converted graded carbon quantum dots.
    Liu L; Yu X; Yi Z; Chi F; Wang H; Yuan Y; Li D; Xu K; Zhang X
    Nanoscale; 2019 Aug; 11(32):15083-15090. PubMed ID: 31380538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Surface State Control of Carbon Quantum Dots to Enhance Charge Extraction for Solar Cells.
    Yang Q; Yang W; Zhang Y; Ge W; Yang X; Yang P
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32143521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.
    Sablon KA; Little JW; Mitin V; Sergeev A; Vagidov N; Reinhardt K
    Nano Lett; 2011 Jun; 11(6):2311-7. PubMed ID: 21545165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.
    Zhang X; Aitola K; Hägglund C; Kaskela A; Johansson MB; Sveinbjörnsson K; Kauppinen EI; Johansson EM
    ChemSusChem; 2017 Jan; 10(2):434-441. PubMed ID: 27873480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells.
    Briscoe J; Marinovic A; Sevilla M; Dunn S; Titirici M
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4463-8. PubMed ID: 25704873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent Carbon Quantum Dots Incorporated into Dye-Sensitized TiO2 Photoanodes with Dual Contributions.
    Shi Y; Na Y; Su T; Li L; Yu J; Fan R; Yang Y
    ChemSusChem; 2016 Jun; 9(12):1498-503. PubMed ID: 27218888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells.
    Guo W; Chen C; Ye M; Lv M; Lin C
    Nanoscale; 2014 Apr; 6(7):3656-63. PubMed ID: 24562374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-Nanodot Solar Cells from Renewable Precursors.
    Marinovic A; Kiat LS; Dunn S; Titirici MM; Briscoe J
    ChemSusChem; 2017 Mar; 10(5):1004-1013. PubMed ID: 28107609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO
    Chen L; Chen W; Li J; Wang J; Wang E
    ChemSusChem; 2017 Jul; 10(14):2945-2954. PubMed ID: 28544657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.
    Beard MC; Johnson JC; Luther JM; Nozik AJ
    Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye-semiconductor complex.
    Ma Z; Zhang YL; Wang L; Ming H; Li H; Zhang X; Wang F; Liu Y; Kang Z; Lee ST
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5080-4. PubMed ID: 23668995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered graphene/quantum dots: nanoassemblies for highly efficient solar cells.
    Dai L
    ChemSusChem; 2010 Jul; 3(7):797-9. PubMed ID: 20512800
    [No Abstract]   [Full Text] [Related]  

  • 14. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells.
    Ho CR; Tsai ML; Jhuo HJ; Lien DH; Lin CA; Tsai SH; Wei TC; Huang KP; Chen SA; He JH
    Nanoscale; 2013 Jul; 5(14):6350-5. PubMed ID: 23455444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.
    Jiang L; You T; Deng WQ
    Nanotechnology; 2013 Oct; 24(41):415401. PubMed ID: 24045808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet exciton fission-sensitized infrared quantum dot solar cells.
    Ehrler B; Wilson MW; Rao A; Friend RH; Greenham NC
    Nano Lett; 2012 Feb; 12(2):1053-7. PubMed ID: 22257168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.
    Mutlugun E; Soganci IM; Demir HV
    Opt Express; 2008 Mar; 16(6):3537-45. PubMed ID: 18542446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.
    Ganapathy V; Kong EH; Park YC; Jang HM; Rhee SW
    Nanoscale; 2014 Mar; 6(6):3296-301. PubMed ID: 24509529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot synthesis from waste biomass and its applications in energy and bioremediation.
    Ahuja V; Bhatt AK; Varjani S; Choi KY; Kim SH; Yang YH; Bhatia SK
    Chemosphere; 2022 Apr; 293():133564. PubMed ID: 35007612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.
    Luo XG; Le Wu M; Wang XX; Zhong XH; Zhao K; Wang JN
    ChemSusChem; 2016 Feb; 9(3):296-301. PubMed ID: 26784865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.