These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3138058)

  • 1. Utilization for protein synthesis of 2-ketoisocaproate relative to utilization of leucine, as estimated from exhalation of labelled CO2.
    Imura K; Shiota T; Swain LM; Walser M
    Clin Sci (Lond); 1988 Sep; 75(3):301-7. PubMed ID: 3138058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization for protein synthesis in individual rat organs of extracellular 2-ketoisocaproate relative to utilization of extracellular leucine.
    Shiota T; Yagi M; Walser M
    Metabolism; 1989 Jul; 38(7):612-8. PubMed ID: 2739573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen sparing by 2-ketoisocaproate in parenterally fed rats.
    Yagi M; Matthews DE; Walser M
    Am J Physiol; 1990 Nov; 259(5 Pt 1):E633-8. PubMed ID: 2122737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the fates of ingested leucine and ingested 2-ketoisocaproate in rats.
    Imura K; Walser M
    Am J Clin Nutr; 1990 May; 51(5):822-5. PubMed ID: 2333840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmental model of leucine kinetics in humans.
    Cobelli C; Saccomani MP; Tessari P; Biolo G; Luzi L; Matthews DE
    Am J Physiol; 1991 Oct; 261(4 Pt 1):E539-50. PubMed ID: 1928344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of whole body protein synthesis from oxidation of infused [1-14C]leucine.
    Yagi M; Walser M
    Am J Physiol; 1990 Jan; 258(1 Pt 1):E151-7. PubMed ID: 2154116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis.
    Kang CW; Tungsanga K; Walser M
    Am J Clin Nutr; 1986 Apr; 43(4):504-9. PubMed ID: 3962903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization for protein synthesis of leucine and valine compared with their keto analogues.
    Swain LM; Shiota T; Walser M
    Am J Clin Nutr; 1990 Mar; 51(3):411-5. PubMed ID: 2309648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of reciprocal pool specific activities to model leucine metabolism in humans.
    Schwenk WF; Beaufrere B; Haymond MW
    Am J Physiol; 1985 Dec; 249(6 Pt 1):E646-50. PubMed ID: 4083346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutritional efficiency of alpha-ketoisocaproate relative to leucine, assessed isotopically.
    Kang CW; Walser M
    Am J Physiol; 1985 Oct; 249(4 Pt 1):E355-9. PubMed ID: 4050988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of alpha-ketoisocaproate for protein synthesis in uremic rats.
    Tungsanga K; Kang CW; Walser M
    Kidney Int; 1986 Dec; 30(6):891-4. PubMed ID: 3820938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between plasma and tissue parameters of leucine metabolism in fed and starved rats.
    Vazquez JA; Paul HS; Adibi SA
    Am J Physiol; 1986 Jun; 250(6 Pt 1):E615-21. PubMed ID: 3087215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splanchnic bed utilization of enteral alpha-ketoisocaproate in humans.
    Matthews DE; Harkin R; Battezzati A; Brillon DJ
    Metabolism; 1999 Dec; 48(12):1555-63. PubMed ID: 10599988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine and alpha-ketoisocaproate metabolism and interconversions in fed and fasted sheep.
    Pell JM; Caldarone EM; Bergman EN
    Metabolism; 1986 Nov; 35(11):1005-16. PubMed ID: 3773720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of experimental liver disease on the utilization for protein synthesis of orally administered alpha-ketoisocaproate.
    Muñoz S; Walser M
    Hepatology; 1986; 6(3):472-6. PubMed ID: 3710435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of alpha-ketoisocaproate and leucine on the in vivo oxidation of glutamate and glutamine in the rat brain.
    Zielke HR; Huang Y; Baab PJ; Collins RM; Zielke CL; Tildon JT
    Neurochem Res; 1997 Sep; 22(9):1159-64. PubMed ID: 9251107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse relationship of leucine flux and oxidation to free fatty acid availability in vivo.
    Tessari P; Nissen SL; Miles JM; Haymond MW
    J Clin Invest; 1986 Feb; 77(2):575-81. PubMed ID: 3080479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo.
    Van Koevering M; Nissen S
    Am J Physiol; 1992 Jan; 262(1 Pt 1):E27-31. PubMed ID: 1733247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between intake and rate of oxidation of leucine and alpha-ketoisocaproate in vivo in the rat.
    Harper AE; Benjamin E
    J Nutr; 1984 Feb; 114(2):431-40. PubMed ID: 6694002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in leucine kinetics during meal absorption: effects of dietary leucine availability.
    Nissen S; Haymond MW
    Am J Physiol; 1986 Jun; 250(6 Pt 1):E695-701. PubMed ID: 3521316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.