These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 31380762)

  • 21. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active floating micro electrode arrays (AFMA).
    Kim T; Troyk PR; Bak M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2807-10. PubMed ID: 17946982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead.
    Villalobos J; Fallon JB; McNeill PM; Allison RK; Bibari O; Williams CE; McDermott HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6908-11. PubMed ID: 26737881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-step Implantation of a 3D Neural Microelectrode Array.
    Yim S; Jeong J; Ihn Y; Hwang D; Yang S; Oh SR; Kim K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3379-3383. PubMed ID: 33018729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Mosquito Inspired Strategy to Implant Microprobes into the Brain.
    Shoffstall AJ; Srinivasan S; Willis M; Stiller AM; Ecker M; Voit WE; Pancrazio JJ; Capadona JR
    Sci Rep; 2018 Jan; 8(1):122. PubMed ID: 29317748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep brain stimulation electrode anchoring using BioGlue((R)), a protective electrode covering, and a titanium microplate.
    Bjarkam CR; Jorgensen RL; Jensen KN; Sunde NA; Sørensen JC
    J Neurosci Methods; 2008 Feb; 168(1):151-5. PubMed ID: 17953993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new method of mounting and directing chronically implanted microdrives.
    Malpeli JG; Weyand TG; LaClair R
    J Neurosci Methods; 1992 Aug; 44(1):19-26. PubMed ID: 1434749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.
    Singh S; Lo MC; Damodaran VB; Kaplan HM; Kohn J; Zahn JD; Shreiber DI
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of chronic multi-channel cortical implantation techniques: manual versus mechanical insertion.
    Rennaker RL; Street S; Ruyle AM; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(2):169-76. PubMed ID: 15698656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion-bonded electrodes for chronic neural stimulation.
    Shah KG; Lee KY; Tolosa V; Tooker A; Felix S; Pannu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():446-9. PubMed ID: 25569992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MEMS-Actuated Carbon Fiber Microelectrode for Neural Recording.
    Zoll RS; Schindler CB; Massey TL; Drew DS; Maharbiz MM; Pister KSJ
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):234-239. PubMed ID: 30892226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces.
    Lacour SP; Benmerah S; Tarte E; FitzGerald J; Serra J; McMahon S; Fawcett J; Graudejus O; Yu Z; Morrison B
    Med Biol Eng Comput; 2010 Oct; 48(10):945-54. PubMed ID: 20535574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes.
    Liu X; Xu Z; Fu X; Liu Y; Jia H; Yang Z; Zhang J; Wei S; Duan X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108593
    [No Abstract]   [Full Text] [Related]  

  • 39. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain.
    Kozai TD; Kipke DR
    J Neurosci Methods; 2009 Nov; 184(2):199-205. PubMed ID: 19666051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.