These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 31380829)

  • 1. Synthesis of Graphene Nanofluids with Controllable Flake Size Distributions.
    Baolei D; Qifei J
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31380829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Nanoflake Uptake Mediated by Scavenger Receptors.
    Alnasser F; Castagnola V; Boselli L; Esquivel-Gaon M; Efeoglu E; McIntyre J; Byrne HJ; Dawson KA
    Nano Lett; 2019 Feb; 19(2):1260-1268. PubMed ID: 30628448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.
    Throckmorton J; Palmese G
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14870-7. PubMed ID: 26076058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.
    Hadi A; Zahirifar J; Karimi-Sabet J; Dastbaz A
    Ultrason Sonochem; 2018 Jun; 44():204-214. PubMed ID: 29680604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.
    Sasikala SP; Huang K; Giroire B; Prabhakaran P; Henry L; Penicaud A; Poulin P; Aymonier C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30964-30971. PubMed ID: 27762542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Sonication as a Route to in-situ Graphene Flake Size Control.
    Turner P; Hodnett M; Dorey R; Carey JD
    Sci Rep; 2019 Jun; 9(1):8710. PubMed ID: 31213655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding.
    Shang NG; Papakonstantinou P; Sharma S; Lubarsky G; Li M; McNeill DW; Quinn AJ; Zhou W; Blackley R
    Chem Commun (Camb); 2012 Feb; 48(13):1877-9. PubMed ID: 22228444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite.
    Liu X; Zheng M; Xiao K; Xiao Y; He C; Dong H; Lei B; Liu Y
    Nanoscale; 2014 May; 6(9):4598-603. PubMed ID: 24632864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of oil-swollen surfactant gels as a growth medium for metal nanoparticle synthesis, and as an exfoliation medium for preparation of graphene.
    Upadhyay RK; Waghmare PR; Roy SS
    J Colloid Interface Sci; 2016 Jul; 474():41-50. PubMed ID: 27093455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of gold nanoparticles with graphene oxide.
    Wang W; He D; Zhang X; Duan J; Wu H; Xu H; Wang Y
    J Nanosci Nanotechnol; 2014 May; 14(5):3412-6. PubMed ID: 24734561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous systems of a surface active ionic liquid having an aromatic anion: phase behavior, exfoliation of graphene flakes and its hydrogelation.
    Kaur M; Singh G; Damarla K; Singh G; Wang H; Wang J; Aswal VK; Kumar A; Kang TS
    Phys Chem Chem Phys; 2019 Dec; 22(1):169-178. PubMed ID: 31793955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Processing Parameters on Massive Production of Graphene by Jet Cavitation.
    Liang S; Shen Z; Yi M; Liu L; Zhang X; Cai C; Ma S
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2686-94. PubMed ID: 26353482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free tracking of nanosized graphene oxide cellular uptake by confocal Raman microscopy.
    Eliášová Sohová M; Bodík M; Siffalovic P; Bugárová N; Labudová M; Zaťovičová M; Hianik T; Omastová M; Majková E; Jergel M; Pastoreková S
    Analyst; 2018 Jul; 143(15):3686-3692. PubMed ID: 29978167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.
    Munuera JM; Paredes JI; Villar-Rodil S; Ayán-Varela M; Martínez-Alonso A; Tascón JM
    Nanoscale; 2016 Feb; 8(5):2982-98. PubMed ID: 26782137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivatization and interlaminar debonding of graphite-iron nanoparticle hybrid interfaces using Fenton chemistry.
    Agarwal N; Bhattacharyya R; Tripathi NK; Kanojia S; Roy D; Mukhopadhyay K; Eswara Prasad N
    Phys Chem Chem Phys; 2017 Jun; 19(25):16329-16336. PubMed ID: 28429029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization.
    Hassan M; Reddy KR; Haque E; Minett AI; Gomes VG
    J Colloid Interface Sci; 2013 Nov; 410():43-51. PubMed ID: 24034217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Mass Production of Graphene Nanoplatelets in ∼100% Yield.
    Dimiev AM; Ceriotti G; Metzger A; Kim ND; Tour JM
    ACS Nano; 2016 Jan; 10(1):274-9. PubMed ID: 26580092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the properties of graphene produced by electrochemical exfoliation.
    Hofmann M; Chiang WY; Nguyễn TD; Hsieh YP
    Nanotechnology; 2015 Aug; 26(33):335607. PubMed ID: 26221914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite.
    Sevilla M; Ferrero GA; Fuertes AB
    Chemistry; 2016 Nov; 22(48):17351-17358. PubMed ID: 27775199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-phase exfoliation, functionalization and applications of graphene.
    Cui X; Zhang C; Hao R; Hou Y
    Nanoscale; 2011 May; 3(5):2118-26. PubMed ID: 21479307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.