BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 31380833)

  • 1. Inducing and Characterizing Vesicular Steatosis in Differentiated HepaRG Cells.
    Di Cocco S; Belloni L; Nunn ADG; Salerno D; Piconese S; Levrero M; Pediconi N
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31380833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling human hepatic steatosis in pluripotent stem cell-derived hepatocytes.
    Sinton MC; Meseguer-Ripolles J; Lucendo-Villarin B; Drake AJ; Hay DC
    STAR Protoc; 2021 Jun; 2(2):100493. PubMed ID: 33997813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of endocrine disruptor impacts on lipid metabolism in a fatty acid-supplemented HepaRG human hepatic cell line.
    Bernal K; Touma C; Le-Grand B; Rose S; Degerli S; Genêt V; Lagadic-Gossmann D; Coumoul X; Martin-Chouly C; Langouët S; Blanc EB
    Chemosphere; 2024 Feb; 349():140883. PubMed ID: 38092172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury.
    Allard J; Bucher S; Ferron PJ; Launay Y; Fromenty B
    Fundam Clin Pharmacol; 2024 Feb; 38(1):152-167. PubMed ID: 37665028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triclocarban induces lipid droplet accumulation and oxidative stress responses by inhibiting mitochondrial fatty acid oxidation in HepaRG cells.
    Nakamura H; Matsui T; Shinozawa T
    Toxicol Lett; 2024 Apr; 396():11-18. PubMed ID: 38631510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extent and features of liver steatosis in vitro pave the way to endothelial dysfunction without physical cell-to-cell contact.
    Baldini F; Khalil M; Serale N; Voci A; Portincasa P; Vergani L
    Nutr Metab Cardiovasc Dis; 2021 Nov; 31(12):3522-3532. PubMed ID: 34629256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mARC1 in MASLD: Modulation of lipid accumulation in human hepatocytes and adipocytes.
    Jones AK; Bajrami B; Campbell MK; Erzurumluoglu AM; Guo Q; Chen H; Zhang X; Zeveleva S; Kvaskoff D; Brunner AD; Muller S; Gathey V; Dave RM; Tanner JW; Rixen S; Struwe MA; Phoenix K; Klumph KJ; Robinson H; Veyel D; Muller A; Noyvert B; Bartholdy BA; Steixner-Kumar AA; Stutzki J; Drichel D; Omland S; Sheehan R; Hill J; Bretschneider T; Gottschling D; Scheidig AJ; Clement B; Giera M; Ding Z; Broadwater J; Warren CR
    Hepatol Commun; 2024 May; 8(5):. PubMed ID: 38619429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive methods of monitoring Fe
    Kuhn J; McDonald A; Mongoin C; Anderson G; Lafeuillade G; Mitchell S; Elfick APD; Bagnaninchi PO; Yiu HHP; Nelson LJ
    Toxicol Lett; 2024 Apr; 394():92-101. PubMed ID: 38428546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early detection of metabolic changes in drug-induced steatosis using metabolomics approaches.
    Yong HY; Larrouy-Maumus G; Zloh M; Smyth R; Ataya R; Benton CM; Munday MR
    RSC Adv; 2020 Nov; 10(67):41047-41057. PubMed ID: 35519189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free Assessment of the Nascent State of Rat Non-alcoholic Fatty Liver Disease Using Spontaneous Raman Microscopy.
    Takemura M; Mochizuki K; Harada Y; Okajima A; Hayakawa M; Dai P; Itoh Y; Tanaka H
    Acta Histochem Cytochem; 2022 Apr; 55(2):57-66. PubMed ID: 35509867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary-like Human Hepatocytes Genetically Engineered to Obtain Proliferation Competence as a Capable Application for Energy Metabolism Experiments in In Vitro Oncologic Liver Models.
    Scheffschick A; Babel J; Sperling S; Nerusch J; Herzog N; Seehofer D; Damm G
    Biology (Basel); 2022 Aug; 11(8):. PubMed ID: 36009822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Rapid Method for Measuring Liver Steatosis Using Bioelectrical Impedance.
    Yoshimoto-Haramura T; Hara T; Soyama A; Kugiyama T; Matsushima H; Matsuguma K; Imamura H; Tanaka T; Adachi T; Hidaka M; Okabe S; Murata M; Eguchi S
    In Vivo; 2022; 36(2):570-575. PubMed ID: 35241508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro/in silico prediction of drug induced steatosis in relation to oral doses and blood concentrations by the Nile Red assay.
    Brecklinghaus T; Albrecht W; Duda J; Kappenberg F; Gründler L; Edlund K; Marchan R; Ghallab A; Cadenas C; Rieck A; Vartak N; Tolosa L; Castell JV; Gardner I; Halilbasic E; Trauner M; Ullrich A; Zeigerer A; Demirci Turgunbayer Ö; Damm G; Seehofer D; Rahnenführer J; Hengstler JG
    Toxicol Lett; 2022 Sep; 368():33-46. PubMed ID: 35963427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a reference and proficiency chemical list for human steatosis endpoints
    Kubickova B; Jacobs MN
    Front Endocrinol (Lausanne); 2023; 14():1126880. PubMed ID: 37168981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic steatosis, a lesion reported in captive aged common marmosets.
    Franco-Mahecha OL; Carrasco SE
    Aging Pathobiol Ther; 2021; 3(1):14-16. PubMed ID: 34888546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting the Twisted Intramolecular Charge Transfer Effect to Construct a Wash-Free Solvatochromic Fluorescent Lipid Droplet Probe for Fatty Liver Disease Diagnosis.
    Wu CJ; Li XY; Zhu T; Zhao M; Song Z; Li S; Shan GG; Niu G
    Anal Chem; 2022 Mar; 94(9):3881-3887. PubMed ID: 35192331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander?
    Hu Y; Wang R; Liu J; Wang Y; Dong J
    Hepatol Commun; 2023 Oct; 7(10):. PubMed ID: 37708445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of calcium dynamics in zebrafish hepatocytes.
    Pozo-Morales M; Garteizgogeascoa I; Perazzolo C; So J; Shin D; Singh SP
    Hepatology; 2023 Mar; 77(3):789-801. PubMed ID: 35829917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach.
    Alarcan J; de Sousa G; Katsanou ES; Spyropoulou A; Batakis P; Machera K; Rahmani R; Lampen A; Braeuning A; Lichtenstein D
    Arch Toxicol; 2022 Jan; 96(1):211-229. PubMed ID: 34778935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adverse outcome pathway-based analysis of liver steatosis in vitro using human liver cell lines.
    Karaca M; Fritsche K; Lichtenstein D; Vural Ö; Kreuzer K; Alarcan J; Braeuning A; Marx-Stoelting P; Tralau T
    STAR Protoc; 2023 Sep; 4(3):102500. PubMed ID: 37616165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.