BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31380872)

  • 1. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers.
    Sheng L; Lu Y; Deng S; Liao X; Zhang K; Ding T; Gao H; Liu D; Deng R; Li J
    Chem Commun (Camb); 2019 Aug; 55(68):10096-10099. PubMed ID: 31380872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure.
    Cai R; Yin F; Chen H; Tian Y; Zhou N
    Mikrochim Acta; 2020 Apr; 187(5):304. PubMed ID: 32350613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional chimera aptamer and molecular beacon based fluorescent detection of Staphylococcus aureus with strand displacement-target recycling amplification.
    Cai R; Yin F; Zhang Z; Tian Y; Zhou N
    Anal Chim Acta; 2019 Oct; 1075():128-136. PubMed ID: 31196418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-up RNA aptamer enabled label-free protein detection via a proximity induced transcription assay.
    Ying ZM; Xiao HY; Tang H; Yu RQ; Jiang JH
    Chem Commun (Camb); 2018 Aug; 54(64):8877-8880. PubMed ID: 30043035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive Fluorometric Angling Determination of
    Cui F; Sun J; de Dieu Habimana J; Yang X; Ji J; Zhang Y; Lei H; Li Z; Zheng J; Fan M; Sun X
    Anal Chem; 2019 Nov; 91(22):14681-14690. PubMed ID: 31617347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline.
    Dai Y; Zhang Y; Liao W; Wang W; Wu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118406. PubMed ID: 32387918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen.
    Muniandy S; Dinshaw IJ; Teh SJ; Lai CW; Ibrahim F; Thong KL; Leo BF
    Anal Bioanal Chem; 2017 Nov; 409(29):6893-6905. PubMed ID: 29030671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis.
    Yao W; Shi J; Ling J; Guo Y; Ding C; Ding Y
    Mikrochim Acta; 2020 Jun; 187(7):406. PubMed ID: 32594319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly profiling intact Staphylococcus aureus in water and foods via enzymatic cleavage aptasensor.
    Lu Y; Yuan Z; Bai J; Lin Q; Deng R; Luo A; Chi Y; Deng S; He Q
    Anal Chim Acta; 2020 Oct; 1132():28-35. PubMed ID: 32980108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1.
    Huang Y; Chen X; Duan N; Wu S; Wang Z; Wei X; Wang Y
    Food Chem; 2015 Jan; 166():623-629. PubMed ID: 25053102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel fluorescent aptasensor for thrombin detection: using poly(m-phenylenediamine) rods as an effective sensing platform.
    Zhang Y; Sun X
    Chem Commun (Camb); 2011 Apr; 47(13):3927-9. PubMed ID: 21350737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum.
    Taghdisi SM; Danesh NM; Nameghi MA; Ramezani M; Abnous K
    Food Chem; 2016 Jul; 203():145-149. PubMed ID: 26948599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres.
    Kong RM; Zhang X; Ding L; Yang D; Qu F
    Anal Bioanal Chem; 2017 Sep; 409(24):5757-5765. PubMed ID: 28741111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.
    Shangguan J; Li Y; He D; He X; Wang K; Zou Z; Shi H
    Analyst; 2015 Jul; 140(13):4489-97. PubMed ID: 25963028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe.
    Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C
    Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enzyme-free DNA circuit for the amplified detection of Cd
    Pan J; Zeng L; Chen J
    Chem Commun (Camb); 2019 Oct; 55(79):11932-11935. PubMed ID: 31531427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-aptamers labeled polydopamine-polyethyleneimine copolymer dots assisted engineering a fluorescence biosensor for sensitive detection of Pseudomonas aeruginosa in food samples.
    Zhong Z; Gao R; Chen Q; Jia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117417. PubMed ID: 31362188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus.
    Yuan J; Wu S; Duan N; Ma X; Xia Y; Chen J; Ding Z; Wang Z
    Talanta; 2014 Sep; 127():163-8. PubMed ID: 24913871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.
    Wei Y; Zhang J; Wang X; Duan Y
    Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.