These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31381126)

  • 1. Characterisation and in vitro and in vivo evaluation of supercritical-CO2-foamed β-TCP/PLCL composites for bone applications.
    Pitkänen S; Paakinaho K; Pihlman H; Ahola N; Hannula M; Asikainen S; Manninen M; Morelius M; Keränen P; Hyttinen J; Kellomäki M; Laitinen-Vapaavuori O; Miettinen S
    Eur Cell Mater; 2019 Aug; 38():35-50. PubMed ID: 31381126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect.
    Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O
    J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite.
    López-González I; Zamora-Ledezma C; Sanchez-Lorencio MI; Tristante Barrenechea E; Gabaldón-Hernández JA; Meseguer-Olmo L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Promoted role of bone morphogenetic protein 2/7 heterodimer in the osteogenic differentiation of human adipose-derived stem cells].
    Zhang X; Liu YS; Lv LW; Chen T; Wu G; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2016 Feb; 48(1):37-44. PubMed ID: 26885906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold.
    Arahira T; Todo M
    J Mech Behav Biomed Mater; 2014 Nov; 39():218-30. PubMed ID: 25146676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.
    Kim SH; Kim SH; Jung Y
    J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M
    Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study.
    Kazemi M; Dehghan MM; Azami M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110071. PubMed ID: 31546377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering.
    Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ
    J Tissue Eng Regen Med; 2015 Apr; 9(4):389-404. PubMed ID: 23166107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications.
    Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo characterization of pentaerythritol triacrylate-co-trimethylolpropane nanocomposite scaffolds as potential bone augments and grafts.
    Chen C; Garber L; Smoak M; Fargason C; Scherr T; Blackburn C; Bacchus S; Lopez MJ; Pojman JA; Del Piero F; Hayes DJ
    Tissue Eng Part A; 2015 Jan; 21(1-2):320-31. PubMed ID: 25134965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.
    Laurent CP; Vaquette C; Liu X; Schmitt JF; Rahouadj R
    J Biomater Appl; 2018 Apr; 32(9):1276-1288. PubMed ID: 29409376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomater Appl; 2014 Feb; 28(6):922-36. PubMed ID: 23640860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic differentiation ability of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta Tricalcium Phosphate composite scaffolds.
    Siddiqui N; Madala S; Rao Parcha S; Mallick SP
    Biomed Phys Eng Express; 2020 Jan; 6(1):015018. PubMed ID: 33438606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.