BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31381206)

  • 21. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair.
    Schubert MS; Thommandru B; Woodley J; Turk R; Yan S; Kurgan G; McNeill MS; Rettig GR
    Sci Rep; 2021 Sep; 11(1):19482. PubMed ID: 34593942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histone H2AX and the small RNA pathway modulate both non-homologous end-joining and homologous recombination in plants.
    Qi Y; Zhang Y; Baller JA; Voytas DF
    Mutat Res; 2016 Jan; 783():9-14. PubMed ID: 26687994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria.
    Bernheim A; Calvo-Villamañán A; Basier C; Cui L; Rocha EPC; Touchon M; Bikard D
    Nat Commun; 2017 Dec; 8(1):2094. PubMed ID: 29234047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template.
    de Pater S; Klemann BJPM; Hooykaas PJJ
    Sci Rep; 2018 Feb; 8(1):3338. PubMed ID: 29463822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving FnCas12a Genome Editing by Exonuclease Fusion.
    Wu Y; Yuan Q; Zhu Y; Gao X; Song J; Yin Z
    CRISPR J; 2020 Dec; 3(6):503-511. PubMed ID: 33346706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas12a System for Biosensing and Gene Regulation.
    Shi Y; Fu X; Yin Y; Peng F; Yin X; Ke G; Zhang X
    Chem Asian J; 2021 Apr; 16(8):857-867. PubMed ID: 33638271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens.
    Mara K; Charlot F; Guyon-Debast A; Schaefer DG; Collonnier C; Grelon M; Nogué F
    New Phytol; 2019 May; 222(3):1380-1391. PubMed ID: 30636294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells.
    Shan Q; Baltes NJ; Atkins P; Kirkland ER; Zhang Y; Baller JA; Lowder LG; Malzahn AA; Haugner JC; Seelig B; Voytas DF; Qi Y
    J Genet Genomics; 2018 Dec; 45(12):681-684. PubMed ID: 30598393
    [No Abstract]   [Full Text] [Related]  

  • 30. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways.
    Qi Y; Zhang Y; Zhang F; Baller JA; Cleland SC; Ryu Y; Starker CG; Voytas DF
    Genome Res; 2013 Mar; 23(3):547-54. PubMed ID: 23282329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Expanding Class 2 CRISPR Toolbox: Diversity, Applicability, and Targeting Drawbacks.
    Hajizadeh Dastjerdi A; Newman A; Burgio G
    BioDrugs; 2019 Oct; 33(5):503-513. PubMed ID: 31385197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Live-cell imaging reveals the trade-off between target search flexibility and efficiency for Cas9 and Cas12a.
    Olivi L; Bagchus C; Pool V; Bekkering E; Speckner K; Offerhaus H; Wu WY; Depken M; Martens KJA; Staals RHJ; Hohlbein J
    Nucleic Acids Res; 2024 May; 52(9):5241-5256. PubMed ID: 38647045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases.
    Tóth E; Varga É; Kulcsár PI; Kocsis-Jutka V; Krausz SL; Nyeste A; Welker Z; Huszár K; Ligeti Z; Tálas A; Welker E
    Nucleic Acids Res; 2020 Apr; 48(7):3722-3733. PubMed ID: 32107556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing in planta gene targeting efficiencies in Arabidopsis using temperature-tolerant CRISPR/LbCas12a.
    Merker L; Schindele P; Huang TK; Wolter F; Puchta H
    Plant Biotechnol J; 2020 Dec; 18(12):2382-2384. PubMed ID: 32473055
    [No Abstract]   [Full Text] [Related]  

  • 36. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing.
    Wang L; Wang H; Liu H; Zhao Q; Liu B; Wang L; Zhang J; Zhu J; Bao R; Luo Y
    Biotechnol Bioeng; 2019 Jun; 116(6):1463-1474. PubMed ID: 30730047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome editing in plants with MAD7 nuclease.
    Lin Q; Zhu Z; Liu G; Sun C; Lin D; Xue C; Li S; Zhang D; Gao C; Wang Y; Qiu JL
    J Genet Genomics; 2021 Jun; 48(6):444-451. PubMed ID: 34120856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens.
    Collonnier C; Epert A; Mara K; Maclot F; Guyon-Debast A; Charlot F; White C; Schaefer DG; Nogué F
    Plant Biotechnol J; 2017 Jan; 15(1):122-131. PubMed ID: 27368642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.