BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 31381466)

  • 1. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices.
    Romanov V; Samuel R; Chaharlang M; Jafek AR; Frost A; Gale BK
    Anal Chem; 2018 Sep; 90(17):10450-10456. PubMed ID: 30071717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDMS lab-on-a-chip fabrication using 3D printed templates.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Jan; 14(2):424-30. PubMed ID: 24281262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines.
    Kara A; Vassiliadou A; Ongoren B; Keeble W; Hing R; Lalatsa A; Serrano DR
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells.
    Cao JT; Zhu YD; Rana RK; Zhu JJ
    Biosens Bioelectron; 2014 Jan; 51():97-102. PubMed ID: 23942358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.
    Muluneh M; Issadore D
    Lab Chip; 2014 Dec; 14(23):4552-8. PubMed ID: 25284502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the channel diameter of polydimethylsiloxane fluidic chips made by a 3D-printed sacrificial template and their application for flow-injection analysis.
    Yamashita T; Muramoto T
    Anal Sci; 2022 Mar; 38(3):583-589. PubMed ID: 35286631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.