These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31381862)

  • 1. Assessment of a novel, smartglass-based control device for electrically powered wheelchairs.
    Penkert H; Baron JC; Madaus K; Huber W; Berthele A
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):172-176. PubMed ID: 31381862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control devices for electrically powered wheelchairs: prevalence, defining characteristics and user perspectives.
    Dolan MJ; Henderson GI
    Disabil Rehabil Assist Technol; 2017 Aug; 12(6):618-624. PubMed ID: 27434381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in outcomes between the JoyBar control and standard wheelchair joystick control on two maneuverability tasks: a pilot study.
    Smith EM; Fuller D; Mahmood H; Miller WC
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):523-526. PubMed ID: 28792791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of seating, powered characteristics and functions and costs of electrically powered wheelchairs in a general population of users.
    Dolan MJ; Bolton MJ; Henderson GI
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):56-61. PubMed ID: 29072545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrater Reliability of the Power Mobility Road Test in the Virtual Reality-Based Simulator-2.
    Kamaraj DC; Dicianno BE; Mahajan HP; Buhari AM; Cooper RA
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1078-84. PubMed ID: 26921680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of differences in powered wheelchair joystick shape on subjective and objective operability.
    Koyama S; Tatemoto T; Kumazawa N; Tanabe S; Nakagawa Y; Otaka Y
    Appl Ergon; 2023 Feb; 107():103920. PubMed ID: 36306702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of two power assist systems for manual wheelchairs for usability, performance and mobility: a pilot study.
    Flockhart EW; Miller WC; Campbell JA; Mattie JL; Borisoff JF
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1290-1302. PubMed ID: 34807781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation System of Electric-Powered Wheelchairs for Training Purposes.
    Hernandez-Ossa KA; Montenegro-Couto EH; Longo B; Bissoli A; Sime MM; Lessa HM; Enriquez IR; Frizera-Neto A; Bastos-Filho T
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in power wheelchair joystick technology: Effects of isometric joysticks and signal conditioning on driving performance.
    Dicianno BE; Spaeth DM; Cooper RA; Fitzgerald SG; Boninger ML
    Am J Phys Med Rehabil; 2006 Aug; 85(8):631-9. PubMed ID: 16865017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recipients of electric-powered indoor/outdoor wheelchairs provided by a national health service: a cross-sectional study.
    Frank AO; De Souza LH
    Arch Phys Med Rehabil; 2013 Dec; 94(12):2403-2409. PubMed ID: 23891668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to use a rear-mounted power assist for manual wheelchairs.
    Sawatzky B; Mortenson WB; Wong S
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):772-776. PubMed ID: 28920505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pilot investigation of anterior tilt use among power wheelchair users.
    Rice LA; Yarnot R; Mills S; Sonsoff J
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):152-159. PubMed ID: 31348680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usability Evaluation of a Novel Robotic Power Wheelchair for Indoor and Outdoor Navigation.
    Candiotti JL; Kamaraj DC; Daveler B; Chung CS; Grindle GG; Cooper R; Cooper RA
    Arch Phys Med Rehabil; 2019 Apr; 100(4):627-637. PubMed ID: 30148995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A head orientated wheelchair for people with disabilities.
    Chen YL; Chen SC; Chen WL; Lin JF
    Disabil Rehabil; 2003 Mar; 25(6):249-53. PubMed ID: 12623613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile Sensor-Based Steering as a Substitute of the Attendant Joystick in Powered Wheelchairs.
    Trujillo-Leon A; Bachta W; Vidal-Verdu F
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1381-1390. PubMed ID: 29985147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SenseJoy, a pluggable solution for assessing user behavior during powered wheelchair driving tasks.
    Rabreau O; Chevallier S; Chassagne L; Monacelli E
    J Neuroeng Rehabil; 2019 Nov; 16(1):134. PubMed ID: 31694645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SWADAPT2: benefits of a collision avoidance assistance for powered wheelchair users in driving difficulty.
    Fraudet B; Leblong E; Piette P; Nicolas B; Devigne L; Babel M; Pasteau F; Routhier F; Gallien P
    Disabil Rehabil Assist Technol; 2024 Jul; 19(5):1907-1915. PubMed ID: 37681970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joystick control for powered mobility: current state of technology and future directions.
    Dicianno BE; Cooper RA; Coltellaro J
    Phys Med Rehabil Clin N Am; 2010 Feb; 21(1):79-86. PubMed ID: 19951779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How many people would benefit from a smart wheelchair?
    Simpson RC; LoPresti EF; Cooper RA
    J Rehabil Res Dev; 2008; 45(1):53-71. PubMed ID: 18566926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.