These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 31381903)
41. Intraspecific larval competition in the olive fruit fly (Diptera: tephritidae). Burrack HJ; Fornell AM; Connell JH; O'Connell NV; Phillips PA; Vossen PM; Zalom FG Environ Entomol; 2009 Oct; 38(5):1400-10. PubMed ID: 19825295 [TBL] [Abstract][Full Text] [Related]
42. Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. Abdelfattah A; Ruano-Rosa D; Cacciola SO; Li Destri Nicosia MG; Schena L PLoS One; 2018; 13(11):e0199403. PubMed ID: 30496186 [TBL] [Abstract][Full Text] [Related]
43. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. Raza MF; Wang Y; Cai Z; Bai S; Yao Z; Awan UA; Zhang Z; Zheng W; Zhang H PLoS Pathog; 2020 Apr; 16(4):e1008441. PubMed ID: 32294136 [TBL] [Abstract][Full Text] [Related]
44. High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Wang XG; Johnson MW; Daane KM; Nadel H Environ Entomol; 2009 Oct; 38(5):1496-504. PubMed ID: 19825305 [TBL] [Abstract][Full Text] [Related]
45. Overwintering survival of olive fruit fly (Diptera: Tephritidae) and two introduced parasitoids in California. Wang XG; Levy K; Nadel H; Johnson MW; Blanchet A; Argov Y; Pickett CH; Daane KM Environ Entomol; 2013 Jun; 42(3):467-76. PubMed ID: 23726056 [TBL] [Abstract][Full Text] [Related]
46. Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly. He M; Chen H; Yang X; Gao Y; Lu Y; Cheng D Commun Biol; 2022 Sep; 5(1):973. PubMed ID: 36109578 [TBL] [Abstract][Full Text] [Related]
47. Commensal microbiota modulates larval foraging behaviour, development rate and pupal production in Bactrocera tryoni. Morimoto J; Nguyen B; Tabrizi ST; Lundbäck I; Taylor PW; Ponton F; Chapman TA BMC Microbiol; 2019 Dec; 19(Suppl 1):286. PubMed ID: 31870299 [TBL] [Abstract][Full Text] [Related]
48. Effect of Bactrocera oleae on phenolic compounds and antioxidant and antibacterial activities of two Algerian olive cultivars. Medjkouh L; Tamendjari A; Alves RC; Araújo M; Oliveira MB Food Funct; 2016 Oct; 7(10):4372-4378. PubMed ID: 27713969 [TBL] [Abstract][Full Text] [Related]
49. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi). de Alfonso I; Vacas S; Primo J J Agric Food Chem; 2014 Dec; 62(49):11976-9. PubMed ID: 25408316 [TBL] [Abstract][Full Text] [Related]
50. Impact of Larval Food Source on the Stability of the Bactrocera dorsalis Microbiome. Kempraj V; Auth J; Cha DH; Mason CJ Microb Ecol; 2024 Feb; 87(1):46. PubMed ID: 38407587 [TBL] [Abstract][Full Text] [Related]
51. Olive fruit fly rearing procedures affect the vertical transmission of the bacterial symbiont Candidatus Erwinia dacicola. Sacchetti P; Pastorelli R; Bigiotti G; Guidi R; Ruschioni S; Viti C; Belcari A BMC Biotechnol; 2019 Dec; 19(Suppl 2):91. PubMed ID: 31847839 [TBL] [Abstract][Full Text] [Related]
52. Olive Fruit Fly Symbiont Population: Impact of Metamorphosis. Campos C; Gomes L; Rei FT; Nobre T Front Microbiol; 2022; 13():868458. PubMed ID: 35509306 [TBL] [Abstract][Full Text] [Related]
53. Innate and Learned Responses of the Tephritid Parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to Olive Volatiles Induced by Bactrocera oleae (Diptera: Tephritidae) Infestation. Giunti G; Benelli G; Flamini G; Michaud JP; Canale A J Econ Entomol; 2016 Dec; 109(6):2272-2280. PubMed ID: 27616766 [TBL] [Abstract][Full Text] [Related]
54. Oviposition Deterrent Activity of Fungicides and Low-Risk Substances for the Integrated Management of the Olive Fruit Fly Checchia I; Perin C; Mori N; Mazzon L Insects; 2022 Apr; 13(4):. PubMed ID: 35447804 [TBL] [Abstract][Full Text] [Related]
55. Olive fruit fly and its obligate symbiont Candidatus Erwinia dacicola: Two new symbiont haplotypes in the Mediterranean basin. Nobre T PLoS One; 2021; 16(9):e0256284. PubMed ID: 34495983 [TBL] [Abstract][Full Text] [Related]
56. Artificial diet alters activity and rest patterns in the olive fruit fly. Terzidou AM; Koveos DS; Papadopoulos NT; Carey JR; Kouloussis NA PLoS One; 2023; 18(2):e0274586. PubMed ID: 36802394 [TBL] [Abstract][Full Text] [Related]
57. Symbiosis in Sustainable Agriculture: Can Olive Fruit Fly Bacterial Microbiome Be Useful in Pest Management? Nobre T Microorganisms; 2019 Aug; 7(8):. PubMed ID: 31382604 [TBL] [Abstract][Full Text] [Related]
58. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. Grasso F; Coppola M; Carbone F; Baldoni L; Alagna F; Perrotta G; Pérez-Pulido AJ; Garonna A; Facella P; Daddiego L; Lopez L; Vitiello A; Rao R; Corrado G PLoS One; 2017; 12(8):e0183050. PubMed ID: 28797083 [TBL] [Abstract][Full Text] [Related]
59. Population structure and patterns of geographic differentiation of Bactrocera oleae (Diptera: Tephritidae) in Eastern Mediterranean Basin. Eti CN; Dogac E; Gocmen Taskin B; Gokdere G; Taskin V Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Oct; 29(7):1051-1062. PubMed ID: 29157052 [TBL] [Abstract][Full Text] [Related]
60. Assessment of the Bacteria community structure across life stages of the Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae). Andongma AA; Wan L; Dong YC; Wang YL; He J; Niu CY BMC Microbiol; 2019 Dec; 19(Suppl 1):285. PubMed ID: 31870291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]