BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31382031)

  • 21. Amplified detection of phosphocreatine and creatine after supplementation using CEST MRI at high and ultrahigh magnetic fields.
    Pavuluri K; Rosenberg JT; Helsper S; Bo S; McMahon MT
    J Magn Reson; 2020 Apr; 313():106703. PubMed ID: 32179431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creatine supplementation--part II: in vivo magnetic resonance spectroscopy.
    Kreis R; Kamber M; Koster M; Felblinger J; Slotboom J; Hoppeler H; Boesch C
    Med Sci Sports Exerc; 1999 Dec; 31(12):1770-7. PubMed ID: 10613427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence.
    Sankar SS; Molé PA; Coulson RL
    Magn Reson Med; 1986 Dec; 3(6):958-62. PubMed ID: 3029535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria.
    Yang WC; Geiger PJ; Besman SP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451
    [No Abstract]   [Full Text] [Related]  

  • 27. Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase.
    Kan HE; Renema WK; Isbrandt D; Heerschap A
    J Physiol; 2004 Oct; 560(Pt 1):219-29. PubMed ID: 15284341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulation of phospholipase D in rabbit platelet membranes by nucleoside triphosphates and by phosphocreatine: roles of membrane-bound GDP, nucleoside diphosphate kinase and creatine kinase.
    Fan XT; Sherwood JL; Haslam RJ
    Biochem J; 1994 May; 299 ( Pt 3)(Pt 3):701-9. PubMed ID: 8192658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of free creatine and phosphocreatine concentrations in the isolated perfused rat heart by 1H- and 31P-NMR.
    Unitt JF; Schrader J; Brunotte F; Radda GK; Seymour AM
    Biochim Biophys Acta; 1992 Jan; 1133(2):115-20. PubMed ID: 1731953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creatine supplementation: a comparison of loading and maintenance protocols on creatine uptake by human skeletal muscle.
    Preen D; Dawson B; Goodman C; Beilby J; Ching S
    Int J Sport Nutr Exerc Metab; 2003 Mar; 13(1):97-111. PubMed ID: 12660409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolite patterns related to exhaustion, recovery and transformation of chronically stimulated rabbit fast-twitch muscle.
    Green HJ; Düsterhöft S; Dux L; Pette D
    Pflugers Arch; 1992 Mar; 420(3-4):359-66. PubMed ID: 1598191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intramuscular phosphagen status and the relationship to muscle performance across the age spectrum.
    Kerksick CM; Roberts MD; Dalbo VJ; Sunderland KL
    Eur J Appl Physiol; 2016 Jan; 116(1):115-27. PubMed ID: 26307531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphocreatine and oxidative metabolism-contraction coupling in rabbit aorta.
    Scott DP; Coburn RF
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H597-602. PubMed ID: 2764140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accumulation of phosphocreatine and creatine in the cells and fluid of mouse seminal vesicles is regulated by testosterone.
    Lee H; Gong CL; Wu S; Iyengar MR
    Biol Reprod; 1991 Mar; 44(3):540-5. PubMed ID: 2015371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S; Carr LJ; Kreutzer U; Jue T
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetic driving forces are maintained in resting rat skeletal muscle after dietary creatine supplementation.
    McMillen J; Donovan CM; Messer JI; Willis WT
    J Appl Physiol (1985); 2001 Jan; 90(1):62-6. PubMed ID: 11133894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of intravenously administered phosphocreatine on ATP and phosphocreatine concentrations in the cardiac muscle of the rat.
    Down WH; Chasseaud LF; Ballard SA
    Arzneimittelforschung; 1983; 33(4):552-4. PubMed ID: 6683532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage.
    Balestrino M; Lensman M; Parodi M; Perasso L; Rebaudo R; Melani R; Polenov S; Cupello A
    Amino Acids; 2002; 23(1-3):221-9. PubMed ID: 12373542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.