BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 31382130)

  • 1. Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β.
    Wohua Z; Weiming X
    Biomed Pharmacother; 2019 Oct; 118():108940. PubMed ID: 31382130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of Glutaredoxin 2 alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and ROS production in neurons by enhancing Nrf2 signaling via modulation of GSK-3β.
    Wen J; Li X; Zheng S; Xiao Y
    Brain Res; 2020 Oct; 1745():146946. PubMed ID: 32522629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutaredoxin 2 protects cardiomyocytes from hypoxia/reoxygenation-induced injury by suppressing apoptosis, oxidative stress, and inflammation via enhancing Nrf2 signaling.
    Li C; Xin H; Shi Y; Mu J
    Int Immunopharmacol; 2021 May; 94():107428. PubMed ID: 33581580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of the Glutaredoxin-2 Gene Protects Mice from Diet-Induced Weight Gain, Which Correlates with Increased Mitochondrial Respiration and Proton Leaks in Skeletal Muscle.
    Young A; Gardiner D; Kuksal N; Gill R; O'Brien M; Mailloux RJ
    Antioxid Redox Signal; 2019 Dec; 31(17):1272-1288. PubMed ID: 31317766
    [No Abstract]   [Full Text] [Related]  

  • 5. TRUSS inhibition protects against high fat diet (HFD)-stimulated brain injury by alleviation of inflammatory response.
    Zhu Q; Zhu YY; Wang WN
    Biochem Biophys Res Commun; 2019 Mar; 511(1):41-48. PubMed ID: 30765221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutaredoxin 2 protects lens epithelial cells from epithelial-mesenchymal transition by suppressing mitochondrial oxidative stress-related upregulation of integrin-linked kinase.
    Chen X; Chen Y; Li C; Li J; Zhang S; Liang C; Deng Q; Guo Z; Guo C; Yan H
    Exp Eye Res; 2023 Sep; 234():109609. PubMed ID: 37541331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiomyocyte-specific deletion of GSK-3β leads to cardiac dysfunction in a diet induced obesity model.
    Gupte M; Tumuluru S; Sui JY; Singh AP; Umbarkar P; Parikh SS; Ahmad F; Zhang Q; Force T; Lal H
    Int J Cardiol; 2018 May; 259():145-152. PubMed ID: 29398139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing Irf2bp2 expressions accelerates metabolic syndrome-associated brain injury and hepatic dyslipidemia.
    Ma YL; Xia JL; Gao X
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1651-1658. PubMed ID: 30131248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation.
    Pan ZG; An XS
    Biochem Biophys Res Commun; 2018 Apr; 498(3):416-423. PubMed ID: 29454967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.
    Wang D; Yan J; Chen J; Wu W; Zhu X; Wang Y
    Cell Mol Neurobiol; 2015 Oct; 35(7):1061-71. PubMed ID: 25939427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spleen-kidney supplementing formula alleviates insulin resistance via regulating AKT/glycogen synthase kinase 3β pathway in rats with type 2 diabetic induced by high-fat diet.
    Tian C; Wang Y; La X; Li J; Zhang B
    J Tradit Chin Med; 2019 Apr; 39(2):199-206. PubMed ID: 32186042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of CNR1 prevents metabolic stress-induced cardiac injury through improving insulin resistance (IR) injury and endoplasmic reticulum (ER) stress by promoting AMPK-alpha activation.
    Pei SJ; Zhu HY; Guo JH; Zhang X; Deng ZJ
    Biochem Biophys Res Commun; 2018 Sep; 503(2):744-751. PubMed ID: 29909009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol O-acyltransferase 1 deficiency improves defective insulin signaling in the brains of mice fed a high-fat diet.
    Xu N; Meng H; Liu TY; Feng YL; Qi Y; Zhang DH; Wang HL
    Biochem Biophys Res Commun; 2018 May; 499(2):105-111. PubMed ID: 29453986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation.
    Ge C; Xu M; Qin Y; Gu T; Lou D; Li Q; Hu L; Nie X; Wang M; Tan J
    Food Funct; 2019 May; 10(5):2970-2985. PubMed ID: 31074472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of GSK-3β restores delayed gastric emptying in obesity-induced diabetic female mice.
    Sampath C; Srinivasan S; Freeman ML; Gangula PR
    Am J Physiol Gastrointest Liver Physiol; 2020 Oct; 319(4):G481-G493. PubMed ID: 32812777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of Cardiomyocyte Glycogen Synthase Kinase-3 Beta (GSK-3β) Improves Systemic Glucose Tolerance with Maintained Heart Function in Established Obesity.
    Gupte M; Umbarkar P; Singh AP; Zhang Q; Tousif S; Lal H
    Cells; 2020 Apr; 9(5):. PubMed ID: 32365965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CAPE-pNO
    Li S; Huang Q; Zhang L; Qiao X; Zhang Y; Tang F; Li Z
    Eur J Pharmacol; 2019 Jun; 853():1-10. PubMed ID: 30885574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin ameliorates CKD-induced mitochondrial dysfunction and oxidative stress through inhibiting GSK-3β activity.
    Wang D; Yang Y; Zou X; Zheng Z; Zhang J
    J Nutr Biochem; 2020 Sep; 83():108404. PubMed ID: 32531667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Stress Alters Antioxidant Systems, Suppresses the Adiponectin Receptor 1 and Induces Alzheimer's Like Pathology in Mice Brain.
    Hahm JR; Jo MH; Ullah R; Kim MW; Kim MO
    Cells; 2020 Jan; 9(1):. PubMed ID: 31963819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-regulation of betatrophin enhances insulin sensitivity in type 2 diabetes mellitus through activation of the GSK-3β/PGC-1α signaling pathway.
    Hao Q; Zheng A; Zhang H; Cao H
    J Endocrinol Invest; 2021 Sep; 44(9):1857-1868. PubMed ID: 33464548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.