These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1052 related articles for article (PubMed ID: 31382255)
1. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
3. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442 [TBL] [Abstract][Full Text] [Related]
4. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064 [TBL] [Abstract][Full Text] [Related]
5. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Han SH; Cha M; Jin YZ; Lee KM; Lee JH Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169 [TBL] [Abstract][Full Text] [Related]
6. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds. Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848 [TBL] [Abstract][Full Text] [Related]
7. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
8. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308 [TBL] [Abstract][Full Text] [Related]
9. One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment. Weng W; Li X; Nie W; Liu H; Liu S; Huang J; Zhou Q; He J; Su J; Dong Z; Wang D Int J Nanomedicine; 2020; 15():5027-5042. PubMed ID: 32764934 [TBL] [Abstract][Full Text] [Related]
10. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Yu J; Xu Y; Li S; Seifert GV; Becker ML Biomacromolecules; 2017 Dec; 18(12):4171-4183. PubMed ID: 29020441 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
13. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
14. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds. Gendviliene I; Simoliunas E; Alksne M; Dibart S; Jasiuniene E; Cicenas V; Jacobs R; Bukelskiene V; Rutkunas V Eur Cell Mater; 2021 Feb; 41():204-215. PubMed ID: 33641140 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. Luo Y; Chen S; Shi Y; Ma J Biomed Mater; 2018 Aug; 13(6):065004. PubMed ID: 30091422 [TBL] [Abstract][Full Text] [Related]
16. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Chen S; Shi Y; Zhang X; Ma J Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051 [TBL] [Abstract][Full Text] [Related]
18. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application. Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014 [TBL] [Abstract][Full Text] [Related]
19. Preparation of antibacterial degummed silk fiber/nano-hydroxyapatite/polylactic acid composite scaffold by degummed silk fiber loaded silver nanoparticles. Li G; Qin S; Zhang D; Liu X Nanotechnology; 2019 Jul; 30(29):295101. PubMed ID: 30917342 [TBL] [Abstract][Full Text] [Related]
20. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]