These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31382372)

  • 1. The Kinetic Behaviors of H Impurities in the Li/Ta Bilayer: Application for the Accelerator-Based BNCT.
    Liu X; Chen H; Tong J; He W; Li X; Liang T; Li Y; Yin W
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Monovacancy and Divacancies on Hydrogen Solubility, Trapping and Diffusion Behaviors in fcc-Pd by First Principles.
    Ma BL; Wu YY; Guo YH; Yin W; Zhan Q; Yang HG; Wang S; Wang BT
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of neutrons generated by
    Nakamura S; Igaki H; Okamoto H; Wakita A; Ito M; Imamichi S; Nishioka S; Iijima K; Nakayama H; Takemori M; Kobayashi K; Abe Y; Okuma K; Takahashi K; Inaba K; Murakami N; Nakayama Y; Nishio T; Masutani M; Itami J
    Phys Med; 2019 Feb; 58():121-130. PubMed ID: 30824143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.
    Kobayashi T; Hayashizaki N; Katabuchi T; Tanaka K; Bengua G; Nakao N; Kosako K
    Appl Radiat Isot; 2014 Jun; 88():221-4. PubMed ID: 24491682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.
    Kobayashi T; Bengua G; Tanaka K; Nakagawa Y
    Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerator-based boron neutron capture therapy for malignant glioma: a pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice.
    Zavjalov E; Zaboronok A; Kanygin V; Kasatova A; Kichigin A; Mukhamadiyarov R; Razumov I; Sycheva T; Mathis BJ; Maezono SEB; Matsumura A; Taskaev S
    Int J Radiat Biol; 2020 Jul; 96(7):868-878. PubMed ID: 32339057
    [No Abstract]   [Full Text] [Related]  

  • 9. Liquid Li based neutron source for BNCT and science application.
    Horiike H; Murata I; Iida T; Yoshihashi S; Hoashi E; Kato I; Hashimoto N; Kuri S; Oshiro S
    Appl Radiat Isot; 2015 Dec; 106():92-4. PubMed ID: 26253274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized neutron-beam shaping assembly for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; Valda AA; Minsky DM
    Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.
    Kumada H; Kurihara T; Yoshioka M; Kobayashi H; Matsumoto H; Sugano T; Sakurai H; Sakae T; Matsumura A
    Appl Radiat Isot; 2015 Dec; 106():78-83. PubMed ID: 26260448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Nuclear Reactor-Based to Proton Accelerator-Based Therapy: The Finnish Boron Neutron Capture Therapy Experience.
    Porra L; Wendland L; Seppälä T; Koivunoro H; Revitzer H; Tervonen J; Kankaanranta L; Anttonen A; Tenhunen M; Joensuu H
    Cancer Biother Radiopharm; 2023 Apr; 38(3):184-191. PubMed ID: 36269660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping.
    Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical bonding and Cu diffusion at the Cu/Ta
    Wang J; Ma A; Li M; Jiang J; Chen J; Jiang Y
    Phys Chem Chem Phys; 2018 May; 20(19):13566-13573. PubMed ID: 29736503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
    Minsky DM; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():233-7. PubMed ID: 24345525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials.
    Kasatov D; Makarov A; Shchudlo I; Taskaev S
    Appl Radiat Isot; 2015 Dec; 106():38-40. PubMed ID: 26298434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the relationship between neutron production and thermal load on a target material in an accelerator-based boron neutron capture therapy system employing a solid-state Li target.
    Nakamura S; Igaki H; Ito M; Okamoto H; Nishioka S; Iijima K; Nakayama H; Takemori M; Imamichi S; Kashihara T; Takahashi K; Inaba K; Okuma K; Murakami N; Abe Y; Nakayama Y; Masutani M; Nishio T; Itami J
    PLoS One; 2019; 14(11):e0225587. PubMed ID: 31756237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron Neutron Capture Therapy.
    Matsuya Y; Fukunaga H; Omura M; Date H
    Cells; 2020 Apr; 9(5):. PubMed ID: 32365916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron flux evaluation model provided in the accelerator-based boron neutron capture therapy system employing a solid-state lithium target.
    Nakamura S; Igaki H; Ito M; Imamichi S; Kashihara T; Okamoto H; Nishioka S; Iijima K; Chiba T; Nakayama H; Takemori M; Abe Y; Kaneda T; Takahashi K; Inaba K; Okuma K; Murakami N; Nakayama Y; Masutani M; Nishio T; Itami J
    Sci Rep; 2021 Apr; 11(1):8090. PubMed ID: 33850253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.