These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31382502)

  • 1. Programmable Paper-Based Microfluidic Devices for Biomarker Detections.
    Soum V; Park S; Brilian AI; Kwon OS; Shin K
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31382502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays.
    Kim TH; Hahn YK; Kim MS
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution.
    Kumar A; Parihar A; Panda U; Parihar DS
    ACS Appl Bio Mater; 2022 May; 5(5):2046-2068. PubMed ID: 35473316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally programmable time delay switches for multi-step assays in paper-based microfluidics.
    Atabakhsh S; Haji Abbasali H; Jafarabadi Ashtiani S
    Talanta; 2024 May; 271():125695. PubMed ID: 38295445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization.
    Coelho BJ; Neto JP; Sieira B; Moura AT; Fortunato E; Martins R; Baptista PV; Igreja R; Águas H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitatively controllable fluid flows with ballpoint-pen-printed patterns for programmable photo-paper-based microfluidic devices.
    Soum V; Park S; Brilian AI; Choi JY; Lee Y; Kim W; Kwon OS; Shin K
    Lab Chip; 2020 May; 20(9):1601-1611. PubMed ID: 32249884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper.
    Lutz BR; Trinh P; Ball C; Fu E; Yager P
    Lab Chip; 2011 Dec; 11(24):4274-8. PubMed ID: 22037591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics.
    Asci Erkocyigit B; Ozufuklar O; Yardim A; Guler Celik E; Timur S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pumpless three-dimensional photo paper-based microfluidic analytical device for automatic detection of thioredoxin-1 using enzyme-linked immunosorbent assay.
    Lee MJ; Soum V; Lee SN; Choi JH; Shin JH; Shin K; Oh BK
    Anal Bioanal Chem; 2022 Apr; 414(10):3219-3230. PubMed ID: 34767053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices.
    Mitchell KR; Esene JE; Woolley AT
    Anal Bioanal Chem; 2022 Jan; 414(1):167-180. PubMed ID: 34345949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices.
    Brower K; Puccinelli R; Markin CJ; Shimko TC; Longwell SA; Cruz B; Gomez-Sjoberg R; Fordyce PM
    HardwareX; 2018 Apr; 3():117-134. PubMed ID: 30221210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of paper-based microfluidics in point-of-care testing].
    Xu J; Zhang Y; Su X; Zhang S; Ge S
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1283-1292. PubMed ID: 32748586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays.
    Gonzalez-Suarez AM; Long A; Huang X; Revzin A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based assays for urine analysis.
    Lepowsky E; Ghaderinezhad F; Knowlton S; Tasoglu S
    Biomicrofluidics; 2017 Sep; 11(5):051501. PubMed ID: 29104709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.
    Xia Y; Si J; Li Z
    Biosens Bioelectron; 2016 Mar; 77():774-89. PubMed ID: 26513284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.