These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31382640)

  • 1. A Highly Efficient Heterogeneous Processor for SAR Imaging.
    Wang S; Zhang S; Huang X; An J; Chang L
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.
    Yang C; Li B; Chen L; Wei C; Xie Y; Chen H; Yu W
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FPGA Implementation of the Chirp-Scaling Algorithm for Real-Time Synthetic Aperture Radar Imaging.
    Lee J; Jeong D; Lee S; Lee M; Lee W; Jung Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Speed Continuous Wavelet Transform Processor for Vital Signal Measurement Using Frequency-Modulated Continuous Wave Radar.
    Bae C; Lee S; Jung Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FPGA Implementation of an Efficient FFT Processor for FMCW Radar Signal Processing.
    Heo J; Jung Y; Lee S; Jung Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique.
    Li B; Shi H; Chen L; Yu W; Yang C; Xie Y; Bian M; Zhang Q; Pang L
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Optimisation and Implementation of a Real-Time Back Projection (BP) Algorithm for SAR Based on FPGA.
    Cao Y; Guo S; Jiang S; Zhou X; Wang X; Luo Y; Yu Z; Zhang Z; Deng Y
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image reconstruction algorithm based on frequency-wavenumber decoupling for three-dimensional MIMO-SAR imaging.
    Gao H; Li C; Wu S; Zheng S; Li H; Fang G
    Opt Express; 2020 Jan; 28(2):2411-2426. PubMed ID: 32121931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical SAR data processing configuration with simultaneous azimuth and range matching filtering.
    Wang D; OuYang R; Wang K; Fu T; Jin L; Bi G; Zhang X
    Appl Opt; 2020 Nov; 59(33):10441-10450. PubMed ID: 33361977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.
    Zhang F; Li G; Li W; Hu W; Hu Y
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on processing synthetic aperture radar data based on an optical 4f system for fast imaging.
    Wang D; Zhang Y; Yang C; Wang K
    Opt Express; 2022 Dec; 30(25):44408-44419. PubMed ID: 36522866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refocusing Moving Ship Targets in SAR Images Based on Fast Minimum Entropy Phase Compensation.
    Huang X; Ji K; Leng X; Dong G; Xing X
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.
    Li Z; Su D; Zhu H; Li W; Zhang F; Li R
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28075343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Synthetic Aperture Radar (SAR) Imaging Method Combining Match Filter Imaging and Image Edge Enhancement.
    Sun B; Fang C; Xu H; Gao A
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Aperture Radar Processing Approach for Simultaneous Target Detection and Image Formation.
    Pei J; Huang Y; Huo W; Miao Y; Zhang Y; Yang J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30308993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Real-Time Imaging Algorithm Based on Sub-Aperture CS-Dechirp for GF3-SAR Data.
    Sun GC; Liu Y; Xing M; Wang S; Guo L; Yang J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardware-efficient implementation and experimental demonstration of Hermitian-symmetric IFFT for optical DMT transmitter.
    Chen M; Liu G; Zhang L; Wang X; Zhou H; Chen Q; Xiang C
    Opt Express; 2019 Oct; 27(21):29817-29828. PubMed ID: 31684238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design.
    Li Z; Chi C
    Ultrasonics; 2018 Mar; 84():63-73. PubMed ID: 29078097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel High-Frequency Vibration Error Estimation and Compensation Algorithm for THz-SAR Imaging Based on Local FrFT.
    Li Y; Ding L; Zheng Q; Zhu Y; Sheng J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32392857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ultra-Area-Efficient 1024-Point In-Memory FFT Processor.
    Yantır HE; Guo W; Eltawil AM; Kurdahi FJ; Salama KN
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31370261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.