These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 31382645)

  • 1. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Key Factors Affecting the Capability and Optimization for Magnetostrictive Iron-Gallium Alloy Ambient Vibration Harvesters.
    Liu H; Cong C; Cao C; Zhao Q
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical solution and optimal design for the output performance of Galfenol cantilever energy harvester considering electromechanical coupling effect.
    Wang L; Lian C; Shu D; Yan Z; Nie X
    Sci Rep; 2023 Aug; 13(1):12857. PubMed ID: 37553385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.
    Leung CM; Wang Y; Chen W
    Rev Sci Instrum; 2016 Nov; 87(11):114705. PubMed ID: 27910368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions.
    Wang L; Zhu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester.
    Li M; Deng H; Zhang Y; Li K; Huang S; Liu X
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.
    Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L
    Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a monostable symmetric piezoelectric energy harvester based on cantilever structure and magnetic excitation action.
    Wang L; Zhang Y; Wang T
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38727573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.
    Zhang Y; Zheng R; Shimono K; Kaizuka T; Nakano K
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Energy Harvester with Temperature Threshold Triggered Cycling Generation for Thermal Event Autonomous Monitoring.
    Han R; Wang N; He Q; Wang J; Li X
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a modified magnetostrictive energy harvester in mechanical vibration.
    Dey S; Roy D; Patra S; Santra T
    Heliyon; 2019 Jan; 5(1):e01135. PubMed ID: 30705986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Magnetically Coupled Electromagnetic Energy Harvester with Low Operating Frequency for Human Body Kinetic Energy.
    Li X; Meng J; Yang C; Zhang H; Zhang L; Song R
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.