BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31382665)

  • 1. Cross-Linking Strategies for Electrospun Gelatin Scaffolds.
    Campiglio CE; Contessi Negrini N; Farè S; Draghi L
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography.
    Campiglio CE; Ponzini S; De Stefano P; Ortoleva G; Vignati L; Draghi L
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33113784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation.
    Kishan AP; Nezarati RM; Radzicki CM; Renfro AL; Robinson JL; Whitely ME; Cosgriff-Hernandez EM
    J Mater Chem B; 2015 Oct; 3(40):7930-7938. PubMed ID: 32262902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations.
    El-Seedi HR; Said NS; Yosri N; Hawash HB; El-Sherif DM; Abouzid M; Abdel-Daim MM; Yaseen M; Omar H; Shou Q; Attia NF; Zou X; Guo Z; Khalifa SAM
    Heliyon; 2023 May; 9(5):e16228. PubMed ID: 37234631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering.
    Heydarkhan-Hagvall S; Schenke-Layland K; Dhanasopon AP; Rofail F; Smith H; Wu BM; Shemin R; Beygui RE; MacLellan WR
    Biomaterials; 2008 Jul; 29(19):2907-14. PubMed ID: 18403012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering.
    Agheb M; Dinari M; Rafienia M; Salehi H
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():240-251. PubMed ID: 27987704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications.
    Gonçalves de Pinho AR; Odila I; Leferink A; van Blitterswijk C; Camarero-Espinosa S; Moroni L
    Front Bioeng Biotechnol; 2019; 7():231. PubMed ID: 31681736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term stabilization of polysaccharide electrospun fibres by in situ cross-linking.
    Shi L; Le Visage C; Chew SY
    J Biomater Sci Polym Ed; 2011; 22(11):1459-72. PubMed ID: 20626930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications.
    Aldana AA; Abraham GA
    Int J Pharm; 2017 May; 523(2):441-453. PubMed ID: 27640245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering.
    Lim DJ
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review.
    Singh YP; Dasgupta S
    J Biomater Sci Polym Ed; 2022 Sep; 33(13):1704-1758. PubMed ID: 35443894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair.
    Jiang Q; Xu H; Cai S; Yang Y
    J Mater Sci Mater Med; 2014 Jul; 25(7):1789-800. PubMed ID: 24728742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity.
    Lee J; Yoo JJ; Atala A; Lee SJ
    Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.
    Chou SF; Luo LJ; Lai JY; Ma DH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1145-1155. PubMed ID: 27987671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water.
    Panzavolta S; Gioffrè M; Focarete ML; Gualandi C; Foroni L; Bigi A
    Acta Biomater; 2011 Apr; 7(4):1702-9. PubMed ID: 21095244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current approaches to electrospun nanofibers for tissue engineering.
    Rim NG; Shin CS; Shin H
    Biomed Mater; 2013 Feb; 8(1):014102. PubMed ID: 23472258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering.
    Nadim A; Khorasani SN; Kharaziha M; Davoodi SM
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():47-58. PubMed ID: 28576011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-Crosslinked Electrospun Fibrous Gelatin Hydrogel for Potential Soft Tissue Engineering.
    Nie K; Han S; Yang J; Sun Q; Wang X; Li X; Li Q
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.