BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31382665)

  • 21. Electrospun Zein/Gelatin Scaffold-Enhanced Cell Attachment and Growth of Human Periodontal Ligament Stem Cells.
    Yang F; Miao Y; Wang Y; Zhang LM; Lin X
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29023390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-linked electrospun gelatin nanofibers for cell-based assays.
    Ghassemi Z; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6088-6091. PubMed ID: 30441724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can we achieve biomimetic electrospun scaffolds with gelatin alone?
    Roldán E; Reeves ND; Cooper G; Andrews K
    Front Bioeng Biotechnol; 2023; 11():1160760. PubMed ID: 37502104
    [No Abstract]   [Full Text] [Related]  

  • 24. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
    Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.
    Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S
    Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds.
    Qian YF; Zhang KH; Chen F; Ke QF; Mo XM
    J Biomater Sci Polym Ed; 2011; 22(8):1099-113. PubMed ID: 20615315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.
    Ingavle GC; Leach JK
    Tissue Eng Part B Rev; 2014 Aug; 20(4):277-93. PubMed ID: 24004443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel biomimetic fiber incorporated scaffolds for tissue engineering.
    Yongcong F; Zhang T; Liverani L; Boccaccini AR; Sun W
    J Biomed Mater Res A; 2019 Dec; 107(12):2694-2705. PubMed ID: 31390481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering.
    Dai X; Kathiria K; Huang YC
    Biofabrication; 2014 Sep; 6(3):035005. PubMed ID: 24758872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of three-dimensional nanofibrous gelatin scaffolds using one-step crosslink technique.
    Teng F; Ding H; Huang Y; Wang J
    J Biomater Sci Polym Ed; 2018 Oct; 29(15):1859-1875. PubMed ID: 30132379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gelatin - Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering.
    Joy J; Pereira J; Aid-Launais R; Pavon-Djavid G; Ray AR; Letourneur D; Meddahi-Pellé A; Gupta B
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1922-1935. PubMed ID: 29032216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.
    Siimon K; Reemann P; Põder A; Pook M; Kangur T; Kingo K; Jaks V; Mäeorg U; Järvekülg M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():538-45. PubMed ID: 25063151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advances in Cell Electrospining of Natural and Synthetic Nanofibers for Regenerative Medicine.
    Zamani R; Aval SF; Pilehvar-Soltanahmadi Y; Nejati-Koshki K; Zarghami N
    Drug Res (Stuttg); 2018 Aug; 68(8):425-435. PubMed ID: 29359298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gelatin/monetite electrospun scaffolds to regenerate bone tissue: Fabrication, characterization, and in-vitro evaluation.
    Singh YP; Mishra B; Gupta MK; Bhaskar R; Han SS; Mishra NC; Dasgupta S
    J Mech Behav Biomed Mater; 2023 Jan; 137():105524. PubMed ID: 36332397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies.
    Bazmandeh AZ; Mirzaei E; Fadaie M; Shirian S; Ghasemi Y
    Int J Biol Macromol; 2020 Nov; 162():359-373. PubMed ID: 32574734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering.
    Chen W; Chen S; Morsi Y; El-Hamshary H; El-Newhy M; Fan C; Mo X
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24415-25. PubMed ID: 27559926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.