These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31382665)

  • 61. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.
    Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G
    J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrospun Fibers for Recruitment and Differentiation of Stem Cells in Regenerative Medicine.
    Sankar S; Sharma CS; Rath SN; Ramakrishna S
    Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28980771
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon.
    Topuz F; Uyar T
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():371-378. PubMed ID: 28866176
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose.
    Siimon K; Siimon H; Järvekülg M
    J Mater Sci Mater Med; 2015 Jan; 26(1):5375. PubMed ID: 25578715
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrospun scaffold tailored for tissue-specific extracellular matrix.
    Teo WE; He W; Ramakrishna S
    Biotechnol J; 2006 Sep; 1(9):918-29. PubMed ID: 16941439
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrospinning and emerging healthcare and medicine possibilities.
    Liu Z; Ramakrishna S; Liu X
    APL Bioeng; 2020 Sep; 4(3):030901. PubMed ID: 32695956
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthetic/natural blended polymer fibrous meshes composed of polylactide, gelatin and glycosaminoglycan for cartilage repair.
    Zhao W; Du Z; Fang J; Fu L; Zhang X; Cai Q; Yang X
    J Biomater Sci Polym Ed; 2020 Aug; 31(11):1437-1456. PubMed ID: 32345135
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Peptide grafting strategies before and after electrospinning of nanofibers.
    Bucci R; Vaghi F; Erba E; Romanelli A; Gelmi ML; Clerici F
    Acta Biomater; 2021 Mar; 122():82-100. PubMed ID: 33326882
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability.
    Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF
    Biomacromolecules; 2009 Jul; 10(7):1675-80. PubMed ID: 19456101
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering.
    Prado-Prone G; Bazzar M; Letizia Focarete M; García-Macedo JA; Perez-Orive J; Ibarra C; Velasquillo C; Silva-Bermudez P
    Biomed Mater; 2020 Mar; 15(3):035001. PubMed ID: 31899893
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design of bioactive electrospun scaffolds for bone tissue engineering.
    Cirillo V; Guarino V; Ambrosio L
    J Appl Biomater Funct Mater; 2012; 10(3):223-8. PubMed ID: 23242869
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold Designed for Bone Tissue Engineering Applications.
    Rachmiel D; Anconina I; Rudnick-Glick S; Halperin-Sternfeld M; Adler-Abramovich L; Sitt A
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33808946
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts.
    Elsayed Y; Lekakou C; Labeed F; Tomlins P
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():473-83. PubMed ID: 26838874
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds.
    Jiang YC; Jiang L; Huang A; Wang XF; Li Q; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():901-908. PubMed ID: 27987787
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.
    Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X
    Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Solution Formulation and Rheology for Fabricating Extracellular Matrix-Derived Fibers Using Low-Voltage Electrospinning Patterning.
    Li Z; Lei IM; Davoodi P; Huleihel L; Huang YYS
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3676-3684. PubMed ID: 33405890
    [TBL] [Abstract][Full Text] [Related]  

  • 77. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications.
    Li T; Sun M; Wu S
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269272
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications.
    Lin WH; Tsai WB
    Biofabrication; 2013 Sep; 5(3):035008. PubMed ID: 23839910
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells.
    Amjadian S; Seyedjafari E; Zeynali B; Shabani I
    Int J Pharm; 2016 Jun; 507(1-2):1-11. PubMed ID: 27107902
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering.
    Zha F; Chen W; Zhang L; Yu D
    J Biomater Sci Polym Ed; 2020 Mar; 31(4):519-548. PubMed ID: 31774364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.