These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 31382697)
1. Three-Dimensionally-Printed Polyether-Ether-Ketone Implant with a Cross-Linked Structure and Acid-Etched Microporous Surface Promotes Integration with Soft Tissue. Feng X; Yu H; Liu H; Yu X; Feng Z; Bai S; Zhao Y Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382697 [TBL] [Abstract][Full Text] [Related]
2. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Torstrick FB; Lin ASP; Potter D; Safranski DL; Sulchek TA; Gall K; Guldberg RE Biomaterials; 2018 Dec; 185():106-116. PubMed ID: 30236838 [TBL] [Abstract][Full Text] [Related]
3. Lattice design and 3D-printing of PEEK with Ca Oladapo BI; Ismail SO; Bowoto OK; Omigbodun FT; Olawumi MA; Muhammad MA Int J Biol Macromol; 2020 Dec; 165(Pt A):50-62. PubMed ID: 32979443 [TBL] [Abstract][Full Text] [Related]
4. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
5. Additive manufactured polyether-ether-ketone composite scaffolds with hydroxyapatite filler and porous structure promoted the integration with soft tissue. Sun C; Zhao H; Wang L; Zhang J; Zheng J; Yang Z; Huang L; Wang L; Liu C; Li D; Li Q Biomater Adv; 2022 Oct; 141():213119. PubMed ID: 36152523 [TBL] [Abstract][Full Text] [Related]
6. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. Zheng J; Kang J; Sun C; Yang C; Wang L; Li D J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites. Ma R; Li Q; Wang L; Zhang X; Fang L; Luo Z; Xue B; Ma L Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():429-439. PubMed ID: 28183629 [TBL] [Abstract][Full Text] [Related]
10. A novel 3D printed cage with microporous structure and in vivo fusion function. Li P; Jiang W; Yan J; Hu K; Han Z; Wang B; Zhao Y; Cui G; Wang Z; Mao K; Wang Y; Cui F J Biomed Mater Res A; 2019 Jul; 107(7):1386-1392. PubMed ID: 30724479 [TBL] [Abstract][Full Text] [Related]
11. Modification of the cell adhesion and hydrophilic characteristics of poly(ether-ether-ketone) by 172-nm xenon excimer radiation. Okada Y; Furumatsu T; Miyazawa S; Fujii M; Takahashi H; Kimura H; Ozaki T; Abe N Biomed Mater Eng; 2015; 25(2):169-75. PubMed ID: 25813955 [TBL] [Abstract][Full Text] [Related]
12. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related]
13. A Surface-Mediated Biomimetic Porous Polyether-Ether-Ketone Scaffold for Regulating Immunity and Promoting Osteogenesis. Zhu M; Hu L; Liu Y; Chen P; Wang X; Tang B; Liu C; Zhang R; Fang J; Ren F ACS Biomater Sci Eng; 2024 Oct; 10(10):6120-6134. PubMed ID: 39295122 [TBL] [Abstract][Full Text] [Related]
14. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Evans NT; Torstrick FB; Lee CS; Dupont KM; Safranski DL; Chang WA; Macedo AE; Lin AS; Boothby JM; Whittingslow DC; Carson RA; Guldberg RE; Gall K Acta Biomater; 2015 Feb; 13():159-67. PubMed ID: 25463499 [TBL] [Abstract][Full Text] [Related]
15. Effects of Surface Topography and Chemistry on Polyether-Ether-Ketone (PEEK) and Titanium Osseointegration. Torstrick FB; Lin ASP; Safranski DL; Potter D; Sulchek T; Lee CSD; Gall K; Guldberg RE Spine (Phila Pa 1976); 2020 Apr; 45(8):E417-E424. PubMed ID: 31703050 [TBL] [Abstract][Full Text] [Related]
16. Enhanced bioactivity of titanium-coated polyetheretherketone implants created by a high-temperature 3D printing process. Jung HD; Jang TS; Lee JE; Park SJ; Son Y; Park SH Biofabrication; 2019 Aug; 11(4):045014. PubMed ID: 31365916 [TBL] [Abstract][Full Text] [Related]
17. Effect of micro-roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration. Sunarso ; Tsuchiya A; Fukuda N; Toita R; Tsuru K; Ishikawa K J Biomater Sci Polym Ed; 2018 Aug; 29(12):1375-1388. PubMed ID: 29661104 [TBL] [Abstract][Full Text] [Related]
18. Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant. Li S; Wang T; Hu J; Li Z; Wang B; Wang L; Zhou Z J Mech Behav Biomed Mater; 2021 Aug; 120():104561. PubMed ID: 33965810 [TBL] [Abstract][Full Text] [Related]
19. The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model. Du Z; Zhu Z; Wang Y J Orthop Surg Res; 2018 Jan; 13(1):23. PubMed ID: 29386035 [TBL] [Abstract][Full Text] [Related]
20. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation. Lu T; Qian S; Meng F; Ning C; Liu X Colloids Surf B Biointerfaces; 2016 Jun; 142():192-198. PubMed ID: 26954085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]