These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31382703)

  • 1. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network.
    Slapničar G; Mlakar N; Luštrek M
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning.
    Schrumpf F; Frenzel P; Aust C; Osterhoff G; Fuchs M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A clinical set-up for noninvasive blood pressure monitoring using two photoplethysmograms and based on convolutional neural networks.
    Esmaelpoor J; Sanat ZM; Moradi MH
    Biomed Tech (Berl); 2021 Aug; 66(4):375-385. PubMed ID: 33826809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive arterial blood pressure measurement and SpO
    Chu Y; Tang K; Hsu YC; Huang T; Wang D; Li W; Savitz SI; Jiang X; Shams S
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):131. PubMed ID: 37480040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals.
    Kamanditya B; Fuadah YN; Mahardika T NQ; Lim KM
    Sci Rep; 2024 Jul; 14(1):16450. PubMed ID: 39014018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 16. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-Efficient PPG-Based Respiratory Rate Estimation Using Spiking Neural Networks.
    Yang G; Kang Y; Charlton PH; Kyriacou PA; Kim KK; Li L; Park C
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals.
    Esmaelpoor J; Moradi MH; Kadkhodamohammadi A
    Comput Biol Med; 2020 May; 120():103719. PubMed ID: 32421641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.