These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Direct observation of OH formation from stabilised Criegee intermediates. Novelli A; Vereecken L; Lelieveld J; Harder H Phys Chem Chem Phys; 2014 Oct; 16(37):19941-51. PubMed ID: 25119645 [TBL] [Abstract][Full Text] [Related]
6. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products. Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475 [TBL] [Abstract][Full Text] [Related]
7. Infrared identification of the Criegee intermediates syn- and anti-CH₃CHOO, and their distinct conformation-dependent reactivity. Lin HY; Huang YH; Wang X; Bowman JM; Nishimura Y; Witek HA; Lee YP Nat Commun; 2015 May; 6():7012. PubMed ID: 25959902 [TBL] [Abstract][Full Text] [Related]
8. Unimolecular Kinetics of Stabilized CH Robinson C; Onel L; Newman J; Lade R; Au K; Sheps L; Heard DE; Seakins PW; Blitz MA; Stone D J Phys Chem A; 2022 Oct; 126(39):6984-6994. PubMed ID: 36146923 [TBL] [Abstract][Full Text] [Related]
9. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO. Beames JM; Liu F; Lu L; Lester MI J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244 [TBL] [Abstract][Full Text] [Related]
10. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products. Fang Y; Liu F; Klippenstein SJ; Lester MI J Chem Phys; 2016 Jul; 145(4):044312. PubMed ID: 27475366 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the Gas-Phase Reactions of Lade RE; Onel L; Blitz MA; Seakins PW; Stone D J Phys Chem A; 2024 Apr; 128(14):2815-2824. PubMed ID: 38551990 [TBL] [Abstract][Full Text] [Related]
12. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products. Green AM; Barber VP; Fang Y; Klippenstein SJ; Lester MI Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12372-12377. PubMed ID: 29109292 [TBL] [Abstract][Full Text] [Related]
13. Identification and Self-Reaction Kinetics of Criegee Intermediates syn-CH Luo PL; Endo Y; Lee YP J Phys Chem Lett; 2018 Aug; 9(15):4391-4395. PubMed ID: 30024766 [TBL] [Abstract][Full Text] [Related]
14. Roaming in the Unimolecular Decay of Liu T; Lester MI J Phys Chem A; 2023 Dec; 127(51):10817-10827. PubMed ID: 38109698 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069 [TBL] [Abstract][Full Text] [Related]
16. Infrared-driven unimolecular reaction of CH₃CHOO Criegee intermediates to OH radical products. Liu F; Beames JM; Petit AS; McCoy AB; Lester MI Science; 2014 Sep; 345(6204):1596-8. PubMed ID: 25258077 [TBL] [Abstract][Full Text] [Related]